--- title: "Using epinow() for running in production mode" output: rmarkdown::html_vignette: toc: false number_sections: false bibliography: library.bib csl: https://raw.githubusercontent.com/citation-style-language/styles/master/apa-numeric-superscript-brackets.csl vignette: > %\VignetteIndexEntry{Using epinow() for running in production mode} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- The _EpiNow2_ package contains functionality to run `estimate_infections()` in production mode, i.e. with full logging and saving all relevant outputs and plots to dedicated folders in the hard drive. This is done with the `epinow()` function, that takes the same options as `estimate_infections()` with some additional options that determine, for example, where output gets stored and what output exactly. The function can be a useful option when, e.g., running the model daily with updated data on a high-performance computing server to feed into a dashboard. For more detail on the various model options available, see the [Examples](estimate_infections_options.html) vignette, for more on the general modelling approach the [Workflow](estimate_infections_workflow.html), and for theoretical background the [Model definitions](estimate_infections.html) vignette # Running the model on a single region To run the model in production mode for a single region, set the parameters up in the same way as for `estimate_infections()` (see the [Workflow](estimate_infections_workflow.html) vignette). Here we use the example delay and generation time distributions that come with the package. This should be replaced with parameters relevant to the system that is being studied. ``` r library("EpiNow2") #> #> Attaching package: 'EpiNow2' #> The following object is masked from 'package:stats': #> #> Gamma options(mc.cores = 4) reported_cases <- example_confirmed[1:60] reporting_delay <- LogNormal(mean = 2, sd = 1, max = 10) delay <- example_incubation_period + reporting_delay rt_prior <- list(mean = 2, sd = 0.1) ``` We can then run the `epinow()` function with the same arguments as `estimate_infections()`. ``` r res <- epinow(reported_cases, generation_time = generation_time_opts(example_generation_time), delays = delay_opts(delay), rt = rt_opts(prior = rt_prior) ) #> Logging threshold set at INFO for the name logger #> Writing EpiNow2 logs to the console and: #> '/tmp/RtmpLVW5Qb/regional-epinow/2020-04-21.log'. #> Logging threshold set at INFO for the name logger #> Writing EpiNow2.epinow logs to the console and: #> '/tmp/RtmpLVW5Qb/epinow/2020-04-21.log'. #> WARN [2024-11-01 00:31:23] epinow: There were 10 divergent transitions after warmup. See #> https://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup #> to find out why this is a problem and how to eliminate them. - #> WARN [2024-11-01 00:31:23] epinow: Examine the pairs() plot to diagnose sampling problems #> - res$plots$R ``` ![plot of chunk epinow](epinow-epinow-1.png) The initial messages here indicate where log files can be found. If you want summarised results and plots to be written out where they can be accessed later you can use the `target_folder` argument. # Running the model simultaneously on multiple regions The package also contains functionality to conduct inference contemporaneously (if separately) in production mode on multiple time series, e.g. to run the model on multiple regions. This is done with the `regional_epinow()` function. Say, for example, we construct a dataset containing two regions, `testland` and `realland` (in this simple example both containing the same case data). ``` r cases <- example_confirmed[1:60] cases <- data.table::rbindlist(list( data.table::copy(cases)[, region := "testland"], cases[, region := "realland"] )) ``` To then run this on multiple regions using the default options above, we could use ``` r region_rt <- regional_epinow( data = cases, generation_time = generation_time_opts(example_generation_time), delays = delay_opts(delay), rt = rt_opts(prior = rt_prior), ) #> INFO [2024-11-01 00:31:26] Producing following optional outputs: regions, summary, samples, plots, latest #> Logging threshold set at INFO for the name logger #> Writing EpiNow2 logs to the console and: #> '/tmp/RtmpLVW5Qb/regional-epinow/2020-04-21.log'. #> Logging threshold set at INFO for the name logger #> Writing EpiNow2.epinow logs to: '/tmp/RtmpLVW5Qb/epinow/2020-04-21.log'. #> INFO [2024-11-01 00:31:26] Reporting estimates using data up to: 2020-04-21 #> INFO [2024-11-01 00:31:26] No target directory specified so returning output #> INFO [2024-11-01 00:31:26] Producing estimates for: testland, realland #> INFO [2024-11-01 00:31:26] Regions excluded: none #> INFO [2024-11-01 00:32:52] Completed estimates for: testland #> INFO [2024-11-01 00:36:49] Completed estimates for: realland #> INFO [2024-11-01 00:36:49] Completed regional estimates #> INFO [2024-11-01 00:36:49] Regions with estimates: 2 #> INFO [2024-11-01 00:36:49] Regions with runtime errors: 0 #> INFO [2024-11-01 00:36:49] Producing summary #> INFO [2024-11-01 00:36:49] No summary directory specified so returning summary output #> INFO [2024-11-01 00:36:50] No target directory specified so returning timings ## summary region_rt$summary$summarised_results$table #> Region New infections per day Expected change in daily reports #> #> 1: realland 2201 (1055 -- 4557) Likely decreasing #> 2: testland 2302 (1117 -- 4754) Likely decreasing #> Effective reproduction no. Rate of growth #> #> 1: 0.88 (0.61 -- 1.2) -0.033 (-0.14 -- 0.066) #> 2: 0.9 (0.63 -- 1.2) -0.028 (-0.13 -- 0.076) #> Doubling/halving time (days) #> #> 1: -21 (11 -- -4.9) #> 2: -25 (9.1 -- -5.3) ## plot region_rt$summary$plots$R ``` ![plot of chunk regional_epinow](epinow-regional_epinow-1.png) If instead, we wanted to use the Gaussian Process for `testland` and a weekly random walk for `realland` we could specify these separately using the `opts_list()` function from the package and `modifyList()` from `R`. ``` r gp <- opts_list(gp_opts(), cases) gp <- modifyList(gp, list(realland = NULL), keep.null = TRUE) rt <- opts_list(rt_opts(), cases, realland = rt_opts(rw = 7)) region_separate_rt <- regional_epinow( data = cases, generation_time = generation_time_opts(example_generation_time), delays = delay_opts(delay), rt = rt, gp = gp, ) #> INFO [2024-11-01 00:36:50] Producing following optional outputs: regions, summary, samples, plots, latest #> Logging threshold set at INFO for the name logger #> Writing EpiNow2 logs to the console and: #> '/tmp/RtmpLVW5Qb/regional-epinow/2020-04-21.log'. #> Logging threshold set at INFO for the name logger #> Writing EpiNow2.epinow logs to: '/tmp/RtmpLVW5Qb/epinow/2020-04-21.log'. #> INFO [2024-11-01 00:36:50] Reporting estimates using data up to: 2020-04-21 #> INFO [2024-11-01 00:36:50] No target directory specified so returning output #> INFO [2024-11-01 00:36:50] Producing estimates for: testland, realland #> INFO [2024-11-01 00:36:50] Regions excluded: none #> INFO [2024-11-01 00:38:30] Completed estimates for: testland #> INFO [2024-11-01 00:39:02] Completed estimates for: realland #> INFO [2024-11-01 00:39:02] Completed regional estimates #> INFO [2024-11-01 00:39:02] Regions with estimates: 2 #> INFO [2024-11-01 00:39:02] Regions with runtime errors: 0 #> INFO [2024-11-01 00:39:02] Producing summary #> INFO [2024-11-01 00:39:02] No summary directory specified so returning summary output #> INFO [2024-11-01 00:39:03] No target directory specified so returning timings ## summary region_separate_rt$summary$summarised_results$table #> Region New infections per day Expected change in daily reports #> #> 1: realland 2077 (1045 -- 4285) Likely decreasing #> 2: testland 2217 (1007 -- 4591) Likely decreasing #> Effective reproduction no. Rate of growth #> #> 1: 0.85 (0.61 -- 1.2) -0.039 (-0.11 -- 0.044) #> 2: 0.88 (0.58 -- 1.2) -0.03 (-0.15 -- 0.072) #> Doubling/halving time (days) #> #> 1: -18 (16 -- -6.5) #> 2: -23 (9.7 -- -4.8) ## plot region_separate_rt$summary$plots$R ``` ![plot of chunk regional_epinow_multiple](epinow-regional_epinow_multiple-1.png)