Package 'argo'

Title: Accurate Estimation of Influenza Epidemics using Google Search Data
Description: Augmented Regression with General Online data (ARGO) for accurate estimation of influenza epidemics in United States on national level, regional level and state level. It replicates the method introduced in paper Yang, S., Santillana, M. and Kou, S.C. (2015) <doi:10.1073/pnas.1515373112>; Ning, S., Yang, S. and Kou, S.C. (2019) <doi:10.1038/s41598-019-41559-6>; Yang, S., Ning, S. and Kou, S.C. (2021) <doi:10.1038/s41598-021-83084-5>.
Authors: Shaoyang Ning, Shihao Yang, S. C. Kou
Maintainer: Shihao Yang <[email protected]>
License: GPL-2
Version: 3.0.2
Built: 2024-11-09 04:38:09 UTC
Source: https://github.com/cran/argo

Help Index


Construct ARGO object

Description

Wrapper for ARGO. The real work horse is glmnet package and/or linear model.

Usage

argo(
  data,
  exogen = xts::xts(NULL),
  N_lag = 1:52,
  N_training = 104,
  alpha = 1,
  use_all_previous = FALSE,
  mc.cores = 1,
  schedule = list()
)

Arguments

data

response variable as xts, last element can be NA. If the response is later revised, it should be an xts that resembles upper triangular square matrix, with each column being the data available as of date of column name

exogen

exogenous predictors, default is NULL

N_lag

vector of the AR model lags used, if NULL then no AR lags will be used

N_training

number of training points, if use_all_previous is true, this is the least number of training points required

alpha

penalty between lasso and ridge, alpha=1 represents lasso, alpha=0 represents ridge, alpha=NA represents no penalty

use_all_previous

boolean variable indicating whether to use "all available data" (when TRUE) or "a sliding window" (when FALSE) for training

mc.cores

number of cores to compute argo in parallel

schedule

list to specify prediction schedule. Default to have y_gap as 1, and forecast as 0, i.e., nowcasting with past week ILI available from CDC.

Details

This function takes the time series and exogenous variables (optional) as input, and produces out-of-sample prediction for each time point.

Value

A list of following named objects

  • pred An xts object with the same index as input, which contains historical nowcast estimation

  • coef A matrix contains historical coefficient values of the predictors.

  • parm Parameter values passed to argo function.

  • penalfac the value of lambda ratio selected by cross-validation, NULL if lamid is NULL or has only one level.

  • penalregion the lambda ratios that has a cross validation error within one standard error of minimum cross validation error

References

Yang, S., Santillana, M., & Kou, S. C. (2015). Accurate estimation of influenza epidemics using Google search data via ARGO. Proceedings of the National Academy of Sciences. <doi:10.1073/pnas.1515373112>.

Examples

GFT_xts <- xts::xts(exp(matrix(rnorm(180), ncol=1)), order.by = Sys.Date() - (180:1))
randomx <- xts::xts(exp(matrix(rnorm(180*100), ncol=100)), order.by = Sys.Date() - (180:1))

argo_result1 <- argo(GFT_xts)
argo_result2 <- argo(GFT_xts, exogen = randomx)

main function for argo

Description

main function that reproduce the results in ARGO paper

Usage

argo_main(save.folder = NULL)

Arguments

save.folder

output folder to save graphics. If NULL then do not output graphics.

Examples

argo_main()

ARGO second step

Description

Wrapper for ARGO second step. Best linear predictor / Bayesian posterior

Usage

argo2(truth, argo1.p, argo.nat.p)

Arguments

truth

prediction target

argo1.p

argo first step prediction

argo.nat.p

argo national level prediction

References

Shaoyang Ning, Shihao Yang, S. C. Kou. Accurate Regional Influenza Epidemics Tracking Using Internet Search Data. Scientific Reports

Examples

truth <- xts::xts(exp(matrix(rnorm(180*10), ncol=10)), order.by = Sys.Date() - (180:1))
argo1.p <- xts::xts(exp(matrix(rnorm(180*10), ncol=10)), order.by = Sys.Date() - (180:1))
argo.nat.p <- xts::xts(exp(matrix(rnorm(180*10), ncol=10)), order.by = Sys.Date() - (180:1))
argo2result <- argo2(truth, argo1.p, argo.nat.p)

main function for argo2

Description

main function that reproduce the results in ARGO2 paper

Usage

argo2_main(
  gt.folder,
  ili.folder,
  population.file,
  gft.file,
  save.folder = NULL
)

Arguments

gt.folder

folder with Google Trends files, which should be thousands of csv file such as "US-MA_fever cough.csv" or "US-NY_cold or flu.csv"

ili.folder

folder with ILINet data files: "ILINet_nat.csv" and "ILINet_regional.csv"

population.file

file path to population csv file

gft.file

file path to Google Flu Trends csv file

save.folder

output folder to save graphics. If NULL then do not output graphics.

References

Shaoyang Ning, Shihao Yang, S. C. Kou. Accurate Regional Influenza Epidemics Tracking Using Internet Search Data. Scientific Reports

Examples

## Not run: 
download.file("https://scholar.harvard.edu/files/syang/files/gt2016-10-24.zip",
file.path(tempdir(), "gt2016-10-24.zip"))
unzip(file.path(tempdir(), "gt2016-10-24.zip"), exdir = tempdir())
gt.folder <- file.path(tempdir(), "2016-10-19")
argo2_main(
  gt.folder=gt.folder,
  ili.folder=system.file("regiondata", "ili20161121", package = "argo"),
  population.file=system.file("regiondata", "Population.csv", package = "argo"),
  gft.file=system.file("regiondata", "GFT.txt", package = "argo")
)

## End(Not run)

main function for argox

Description

Main function that reproduce the results in ARGOX paper. The datasets are available at Harvard Dataverse <doi:10.7910/DVN/2IVDGK>.

Usage

argox_main(
  gt.folder,
  ili.folder,
  population.file,
  gft.file,
  mix,
  save.folder = NULL,
  NCORES = 8
)

Arguments

gt.folder

folder with Google Trends files, which should be thousands of csv file such as "US-MA_fever cough.csv" or "US-NY_cold or flu.csv"

ili.folder

folder with ILINet data files: "ILINet_nat.csv" and "ILINet_regional.csv"

population.file

file path to population csv file

gft.file

file path to Google Flu Trends csv file

mix

the weighted avarage mixing of raw state-level Google Trends data. Set to be 0 for stand-alone model. Set to be 1/3 for spatial-pooling model.

save.folder

output folder to save graphics. If NULL then do not output graphics.

NCORES

number of parallel cpu cores to be used.

References

Yang, S., Ning, S. & Kou, S.C. Use Internet search data to accurately track state level influenza epidemics. Sci Rep 11, 4023 (2021)


wrapper for bootstrap relative efficiency confidence interval

Description

This function is used to wrap the bootstrap_relative_efficiency, taking vectorized arguments.

Usage

boot_re(
  pred_data,
  period.all,
  model_good,
  bench.all,
  type,
  truth = "CDC.data",
  l = 50,
  N = 10000,
  sim = "geom",
  conf = 0.95
)

Arguments

pred_data

A matrix that contains the truth vector and the predictions. It can be data.frame or xts object

period.all

vector of the periods to evaluate relative efficiency

model_good

The model to evaluate, must be in the column names of pred_data

bench.all

vector of the models to compare to, must be in the column names of pred_data

type

Must be one of "mse" (mean square error), "mape" (mean absolute percentage error), or "mae" (mean absolute error)

truth

the column name of the truth

l

stationary bootstrap mean block length

N

number of bootstrap samples

sim

simulation method, pass to boot::tsboot

conf

confidence level

Value

A vector of point estimate and corresponding bootstrap confidence interval

Examples

GFT_xts = xts::xts(exp(matrix(rnorm(500), ncol=5)), order.by = Sys.Date() - (100:1))
names(GFT_xts) <- paste0("col", 1:ncol(GFT_xts))
names(GFT_xts)[1] <- "CDC.data"

boot_re(
  pred_data = GFT_xts,
  period.all = c(paste0(zoo::index(GFT_xts)[1], "/", zoo::index(GFT_xts)[50]),
                 paste0(zoo::index(GFT_xts)[51], "/", zoo::index(GFT_xts)[100])),
  model_good = "col2",
  bench.all = c("col3", "col4"),
  type = "mse",
  truth="CDC.data",
  l = 5,
  N = 20
)

bootstrap relative efficiency confidence interval

Description

This function is used to reproduce the ARGO bootstrap confidence interval

Usage

bootstrap_relative_efficiency(
  pred_data,
  model_good,
  model_bench,
  l = 50,
  N = 10000,
  truth = "CDC.data",
  sim = "geom",
  conf = 0.95,
  type = c("mse", "mape", "mae", "mspe", "rmse", "rmspe")
)

Arguments

pred_data

A matrix that contains the truth vector and the predictions. It can be data.frame or xts object

model_good

The model to evaluate, must be in the column names of pred_data

model_bench

The model to compare to, must be in the column names of pred_data

l

stationary bootstrap mean block length

N

number of bootstrap samples

truth

the column name of the truth

sim

simulation method, pass to boot::tsboot

conf

confidence level

type

Must be one of "mse" (mean square error), "mape" (mean absolute percentage error), or "mae" (mean absolute error)

Value

A vector of point estimate and corresponding bootstrap confidence interval

Examples

GFT_xts = xts::xts(exp(matrix(rnorm(1000), ncol=5)), order.by = Sys.Date() - (200:1))
names(GFT_xts) <- paste0("col", 1:ncol(GFT_xts))
names(GFT_xts)[1] <- "CDC.data"
bootstrap_relative_efficiency(
  pred_data = GFT_xts,
  model_good = "col2",
  model_bench = "col3",
  truth="CDC.data",
  N = 100
)

Parsing each Google Trends file downloaded from Google Trends API

Description

Parsing each Google Trends file downloaded from Google Trends API

Usage

gt.parser.pub.api(gt.folder, f)

Arguments

gt.folder

folder that contains Google Trends file

f

filename for Google Trends file


Parsing each Google Trends file downloaded from website

Description

Parsing each Google Trends file downloaded from website

Usage

gt.parser.pub.web(gt.folder, f)

Arguments

gt.folder

folder that contains Google Trends file

f

filename for Google Trends file


Heatmap plot of ARGO coefficients applied on CDC's ILI data

Description

Heatmap plot of ARGO coefficients applied on CDC's ILI data

Usage

heatmap_argo(argo_coef, lim = 0.1, na.grey = TRUE, scale = 1)

Arguments

argo_coef

The coefficient matrix

lim

the limit to truncate for large coefficients for better presentation

na.grey

whether to plot grey for NA values

scale

margin scale

Value

a graph on the default plot window

Examples

cor_coef <- matrix(runif(100, -1, 1), ncol=10)
colnames(cor_coef) <- as.character(Sys.Date() - 10:1)
rownames(cor_coef) <- paste0("row", 1:10)
pdf(file.path(tempdir(), "heatmap_argo.pdf"), height=11,width=12)
heatmap_argo(cor_coef)
dev.off()

Heatmap plot of correlation matrix

Description

Heatmap plot of correlation matrix

Usage

heatmap_cor(cor_heat, lim = 1)

Arguments

cor_heat

The coefficient matrix to draw heatmap

lim

the limit to truncate for large coefficients for better presentation

Value

a graph on the default plot window

Examples

cor_coef <- matrix(runif(100, -1, 1), ncol=10)
colnames(cor_coef) <- paste0("col", 1:10)
rownames(cor_coef) <- paste0("row", 1:10)
heatmap_cor(cor_coef)

Parsing of raw data

Description

Data related to the PNAS paper. Accessed on Nov 14, 2015.

Usage

load_data(type = "extdata", ili.weighted = TRUE)

Arguments

type

the type of the data to be loaded. If type=="extdata" it loads the data to reproduce the PNAS paper, and if type=="athdata" it loads the data to reproduce the CID(?) paper.

ili.weighted

logical indicator to specify whether to load weighted ILI or not, if FALSE unweighted ILI is loaded.

Details

Parse and load CDC's ILI data, Google Flu Trend data, Google Correlate data trained with ILI as of 2010, Google Correlate data trained with ILI as of 2009, Google Trend data with search terms identified from Google Correlate (2010 version).

Each week ends on the Saturday indicated in the xts object

Google Correlate data is standardized by Google, and we rescale it to 0 – 100 during parsing. Google Trends data is in the scale of 0 – 100.

Value

A list of following named xts objects if type=="extdata"

  • GC10 Google Correlate trained with ILI available as of 2010. Google Correlate has been deprecated by Google as of Dec 2019 and is no longer publicly available.

  • GC09 Google Correlate trained with ILI available as of 2009.

  • GT Google Trends data for search queries identified using Google Correlate. Not directly available online, you have to manually input query terms at https://trends.google.com/trends/

  • CDC CDC's ILI dataset. Available online at https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html

  • GFT Google Flu Trend (historical predictions).

A list of following named xts objects if type=="athdata"

References

Yang, S., Santillana, M., & Kou, S. C. (2015). Accurate estimation of influenza epidemics using Google search data via ARGO. Proceedings of the National Academy of Sciences. <doi:10.1073/pnas.1515373112>.

Examples

system.file("extdata", "correlate-Influenza_like_Illness_h1n1_CDC_.csv", package = "argo")
system.file("extdata", "correlate-Influenza_like_Illness_CDC_.csv", package = "argo")
system.file("extdata", "GFT.csv", package = "argo")
system.file("extdata", "ILINet.csv", package = "argo")
load_data()

Parsing of raw data for regional ILI estimation

Description

Parsing of raw data for regional ILI estimation

Usage

load_reg_data(
  gt.folder,
  ili.folder,
  population.file,
  gft.file,
  gt.parser = gt.parser.pub.web
)

Arguments

gt.folder

folder with all Google Trends data

ili.folder

folder with all ILI data

population.file

csv file path with state population data

gft.file

csv file path for Google Flu Trends

gt.parser

Google Trends data parser function, could be 'gt.parser.pub.web' or 'gt.parser.pub.api'

References

Shaoyang Ning, Shihao Yang, S. C. Kou. Accurate Regional Influenza Epidemics Tracking Using Internet Search Data. Scientific Reports

Examples

download.file("https://scholar.harvard.edu/files/syang/files/gt2016-10-24.zip",
file.path(tempdir(), "gt2016-10-24.zip"))
unzip(file.path(tempdir(), "gt2016-10-24.zip"), exdir = tempdir())
gt.folder <- file.path(tempdir(), "2016-10-19")

data_parsed <- load_reg_data(
  gt.folder=gt.folder,
  ili.folder=system.file("regiondata", "ili20161121", package = "argo"),
  population.file=system.file("regiondata", "Population.csv", package = "argo"),
  gft.file=system.file("regiondata", "GFT.txt", package = "argo")
)

logit function

Description

logit function

Usage

logit(x)

Arguments

x

numeric value for logit transformation

Examples

logit(0.5)

inverse logit function

Description

inverse logit function

Usage

logit_inv(x)

Arguments

x

numeric value for inverse logit transformation

Examples

logit_inv(0)

Parsing of Google Trends data

Description

Parsing of Google Trends data

Usage

parse_gt_weekly(folder)

Arguments

folder

folder with weekly Google Trends file

References

Yang, S., Santillana, M., & Kou, S. C. (2015). Accurate estimation of influenza epidemics using Google search data via ARGO. Proceedings of the National Academy of Sciences. <doi:10.1073/pnas.1515373112>.

Examples

download.file("https://scholar.harvard.edu/files/syang/files/gt2016-10-24.zip",
file.path(tempdir(), "gt2016-10-24.zip"))
unzip(file.path(tempdir(), "gt2016-10-24.zip"), exdir = tempdir())
gt.folder <- file.path(tempdir(), "2016-10-19")
parsed_data <- parse_gt_weekly(gt.folder)

Parsing of unrevised ili from online source

Description

Parsing of unrevised ili from online source

Usage

parse_unrevised_ili(type = "extdata", ili.weighted = TRUE)

Arguments

type

the type of data folder to parse

ili.weighted

indicator to use weighted ILI or not

References

Yang, S., Santillana, M., & Kou, S. C. (2015). Accurate estimation of influenza epidemics using Google search data via ARGO. Proceedings of the National Academy of Sciences. <doi:10.1073/pnas.1515373112>.

Examples

parse_unrevised_ili()

Time series plot of ARGO applied on CDC's ILI data

Description

This function is used to reproduce the ARGO plot.

Usage

plot_argo(GFT_xts, GC_GT_cut_date, model_names, legend_names, zoom_periods)

Arguments

GFT_xts

dataframe with all predicted values

GC_GT_cut_date

cutting date for switching datasets

model_names

name of predicting models

legend_names

legend for predicting models

zoom_periods

vector of periods to zoom into

Value

a graph on the default plot window

Examples

GFT_xts = xts::xts(exp(matrix(rnorm(1000), ncol=5)), order.by = Sys.Date() - (200:1))
names(GFT_xts) <- paste0("col", 1:ncol(GFT_xts))
names(GFT_xts)[1] <- "CDC.data"
zoom_periods = c()
for (i in 0:5){
  zoom_periods = c(
    zoom_periods,
    paste0(zoo::index(GFT_xts)[i*30+1], "/", zoo::index(GFT_xts)[i*30+30])
  )
}
plot_argo(
  GFT_xts = GFT_xts,
  GC_GT_cut_date = zoo::index(GFT_xts)[50],
  model_names = colnames(GFT_xts)[-1],
  legend_names = paste0(colnames(GFT_xts)[-1], "legend"),
  zoom_periods = zoom_periods
)

performance summary of ARGO applied on CDC's ILI data

Description

performance summary of ARGO applied on CDC's ILI data

Usage

summary_argo(
  GFT_xts,
  model_names,
  legend_names,
  periods,
  whole_period = "2009-03/2015-10"
)

Arguments

GFT_xts

dataframe with all predicted values

model_names

name of predicting models

legend_names

legend for predicting models

periods

vector of periods to zoom into

whole_period

the whole period duration

Value

A list of summary tables for the input periods, including RMSE, MAE, MAPE, corr

References

Yang, S., Santillana, M., & Kou, S. C. (2015). Accurate estimation of influenza epidemics using Google search data via ARGO. Proceedings of the National Academy of Sciences. <doi:10.1073/pnas.1515373112>. Shaoyang Ning, Shihao Yang, S. C. Kou. Accurate Regional Influenza Epidemics Tracking Using Internet Search Data. Scientific Reports

Examples

GFT_xts = xts::xts(exp(matrix(rnorm(1000), ncol=10)), order.by = Sys.Date() - (100:1))
names(GFT_xts) <- paste0("col", 1:10)
names(GFT_xts)[1] <- "CDC.data"
summary_argo(
  GFT_xts = GFT_xts,
  model_names = colnames(GFT_xts)[-1],
  legend_names = paste0(colnames(GFT_xts)[-1], "legend"),
  periods = c(paste0(zoo::index(GFT_xts)[1], "/", zoo::index(GFT_xts)[49]),
              paste0(zoo::index(GFT_xts)[50], "/", zoo::index(GFT_xts)[100])),
  whole_period="2009-03/"
)