Package: epiCo (via r-universe)

January 27, 2025

Title Statistical and Viz Tools for Vector-Borne Diseases in Colombia

Version 1.0.1

Description Provides statistical and visualization tools for the analysis of demographic indicators, and spatio-temporal behavior and characterization of outbreaks of vector-borne diseases (VBDs) in Colombia. It implements travel times estimated in Bravo-Vega C., Santos-Vega M., & Cordovez J.M. (2022), and the endemic channel method (Bortman, M. (1999) <https://iris.paho.org/handle/10665.2/8562>).

License MIT + file LICENSE

URL https://epiverse-trace.github.io/epiCo/,

https://github.com/epiverse-trace/epiCo

BugReports https://github.com/epiverse-trace/epiCo/issues

Depends R (>= 4.0.0)

- **Imports** dplyr, ggplot2, ggraph, grDevices, igraph, incidence, leaflet, lubridate, magrittr, rlang, scales, spdep, stats, treemapify, utils
- Suggests checkmate, covr, knitr, rmarkdown, spelling, testthat (>= 3.0.0)

VignetteBuilder knitr

Config/Needs/website epiverse-trace/epiversetheme

Config/testthat/edition 3

Config/potools/style explicit

Encoding UTF-8

LazyData true

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.2

Language en-US

13

Config/pak/sysreqs libfontconfig1-dev libfreetype6-dev libgdal-dev gdal-bin libgeos-dev libglpk-dev make libicu-dev libjpeg-dev libpng-dev libxml2-dev libssl-dev libproj-dev libsqlite3-dev libudunits2-dev

Repository https://epiverse-connect.r-universe.dev

RemoteUrl https://github.com/epiverse-trace/epiCo

RemoteRef HEAD

RemoteSha fec74a100872cb3a449c86ee89e3c2e9f947ee81

Contents

ge_risk	2
escribe_ethnicity	3
escribe_occupation	4
ivipola_table	4
ndemic_channel	5
pi_calendar	6
pi_data	7
eometric_mean	7
eometric_sd	8
ncidence_rate	9
sco88_table	10
norans_index	10
eighborhoods	11
opulation_pyramid	12

Index

age_risk

Returns the specific rates associated with being infected given age and sex

Description

Function that returns the specific rates of being infected given age and sex

Usage

```
age_risk(age, population_pyramid, sex = NULL, plot = FALSE)
```

describe_ethnicity

Arguments

A vector with the ages of cases in years from 0 to 100 years		
population_pyramid		
A dataframe with the count of individuals with the columns age, population and		
sex		
A vector with the sex of cases 'F' and 'M'. The default value is NULL		
A boolean for displaying a plot. The default value is FALSE		

Value

A dataframe with the proportion or total count of individuals

Examples

```
pop_pyramid <- population_pyramid("15001", 2015,
  sex = TRUE, total = TRUE,
  plot = FALSE
)
ages <- round(runif(150, 0, 100))
sex <- c(rep("M", 70), rep("F", 80))
age_risk(
  age = ages, sex = sex, population_pyramid = pop_pyramid,
  plot = TRUE
)
```

describe_ethnicity Provides the sociological description of ethnicities in Colombia

Description

Function that returns the description of the consulted ethnicities

Usage

```
describe_ethnicity(ethnic_codes)
```

Arguments

ethnic_codes A numeric vector with the codes of ethnicities to consult

Value

A printed message with ethnicities descriptions

Examples

```
describe_ethnicity(round(runif(n = 150, min = 1, max = 4)))
```

describe_occupation Get ISCO-88 occupation labels from codes

Description

Function that translates a vector of ISCO-88 occupation codes into a vector of labels

Usage

```
describe_occupation(isco_codes, sex = NULL, plot = NULL)
```

Arguments

isco_codes	A numeric vector of ISCO-88 occupation codes (major, submajor, minor, or unit)
sex	A vector with the respective sex for isco_codes vector. The default value is NULL
plot	A type of plot between treemap and circular packing. The default value is NULL

Value

A string vector of ISCO-88 labels

Examples

```
demog_data <- data.frame(
    occupation_label =
        c(6111, 3221, 5113, 5133, 6111, 23, 25),
    sex = c("F", "M", "F", "F", "M", "M", "F")
)
describe_occupation(
    isco_codes = demog_data$occupation_label,
    sex = demog_data$sex, plot = "treemap"
)
```

divipola_table divipola_table

Description

Political and administrative distribution of Colombia's municipalities

Usage

data(divipola_table)

endemic_channel

Format

An object of class data. frame with 1121 rows and 8 columns.

Details

DIVIPOLA table

endemic_channel	Create and return the endemic channel of a disease from an incidence
	object

Description

Function that builds the endemic channel of a disease time series based on the selected method and windows of observation

Usage

```
endemic_channel(
    incidence_historic,
    observations = NULL,
    method = c("geometric", "median", "mean", "unusual_behavior"),
    geometric_method = "shifted",
    outlier_years = NULL,
    outlier_handling = c("ignored", "included", "replaced_by_median", "replaced_by_mean",
        "replaced_by_geometric_mean"),
    ci = 0.95,
    plot = FALSE
)
```

Arguments

incidence_historic		
	An incidence object with the historic weekly observations	
observations	A numeric vector with the current observations	
method	A string with the mean calculation method of preference (median, mean, or geometric) or to use the unusual behavior method (Poisson Distribution Test for Hypoendemic settings)	
geometric_method		
	A string with the selected method for geometric mean calculation; see: geometric_mean	
outlier_years	A numeric vector with the outlier years	
outliers_handling		
	A string with the handling decision regarding outlier years, see: outliers_handling function	

epi_calendar

ci	= 0.95 A numeric value to specify the confidence interval to use with the geometric method
plot	A boolean for displaying a plot

Value

A dataframe with the observation, historical mean, and confidence intervals (or risk areas)

Examples

```
data_event <- epiCo::epi_data
data_ibague <- data_event[data_event$cod_mun_o == 73001, ]
incidence_historic <- incidence::incidence(data_ibague$fec_not,
    interval = "1 epiweek"
)
endemic_channel(incidence_historic,
    method = "geometric", plot = TRUE
)</pre>
```

```
epi_calendar
```

Get the epidemiological calendar of a consulted year.

Description

Function that returns the starting date of the epidemiological weeks in a year of interest.

Usage

```
epi_calendar(year, jan_days = 4)
```

Arguments

year	A numeric value for the year of interest.
jan_days	Number of January days that the first epidemiological week must contains.

Value

A character array with the starting dates of the epidemiological weeks of the given year.

Examples

epi_calendar(2016)

epi_data

Description

Epidemiological data for the Tolima department for the years 2012 to 2022

Usage

data(epi_data)

Format

An object of class tbl_df (inherits from tbl, data.frame) with 66747 rows and 16 columns.

Details

Epidemiological data

geometric_mean	Returns the geometric mean of a vector of	real numbers.
----------------	---	---------------

Description

Function that returns the geometric mean of a vector of real numbers according to the selected method.

Usage

```
geometric_mean(
    x,
    method = c("positive", "shifted", "optimized", "weighted"),
    shift = 1,
    epsilon = 0.001
)
```

Arguments

х	A numeric vector of real values
method	Description of methods:
	• positive = only positive values within x are used in the calculation.
	• shifted = positive and zero values within x are used by adding a shift value
	before the calculation and subtracting it to the final result.

	• optimized = optimized shifted method. See: De La Cruz, R., & Kreft, J. U. (2018). Geometric mean extension for data sets with zeros. arXiv preprint arXiv:1806.06403.
	• weighted = a probability weighted calculation of gm for negative, positive, and zero values. See: Habib, E. A. (2012). Geometric mean for negative and zero values. International Journal of Research and Reviews in Applied Sciences, 11(3), 419-432.
shift	= 1 (default) a positive value to use in the shifted method
epsilon	= 1e-5 (default) the minimum positive value to consider in the optimized method.

Value

The geometric mean of the x vector, and the epsilon value if optimized method is used.

Examples

x <- c(4, 5, 3, 7, 8)
geometric_mean(x, method = "optimized")</pre>

geometric_sd	Returns the geometric standard deviation of a vector of real numbers
--------------	--

Description

Function that returns the geometric standard deviation of a vector of real numbers according to the selected method.

Usage

```
geometric_sd(
    x,
    method = c("positive", "shifted", "optimized", "weighted"),
    shift = 1,
    delta = 0.001
)
```

Arguments

х	A numeric vector of real values
method	Description of methods:
	• positive = only positive values within x are used in the calculation.
	• shifted = positive and zero values within x are used by adding a shift value before the calculation and subtracting it to the final result.
	• optimized = optimized shifted method. See: De La Cruz, R., & Kreft, J. U.
	(2018). Geometric mean extension for data sets with zeros. arXiv preprint arXiv:1806.06403.

	• weighted = a probability weighted calculation of gm for negative, positive, and zero values. See: Habib, E. A. (2012). Geometric mean for negative and zero values. International Journal of Research and Reviews in Applied Sciences, 11(3), 419-432.
shift	a positive value to use in the shifted method
delta	an positive value (shift) used in the optimized method.

Value

The geometric mean of the x vector, and the epsilon value if optimized method is used.

Examples

x <- c(4, 5, 3, 7, 8) geometric_sd(x, method = "optimized")

incidence_rate Extends an incidence class object with incidence rates estimations.

Description

Function that estimates incidence rates from a incidence class object and population projections.

Usage

```
incidence_rate(incidence_object, level, scale = 1e+05)
```

Arguments

incidence_object

	An incidence object.
level	Administration level at which incidence counts are grouped ($0 = national$, $1 = state/department$, $2 = city/municipality$).
scale	Scale to consider when calculating the incidence_rate.

Value

A modified incidence object where counts are normalized with the population.

Examples

```
data_event <- epiCo::epi_data
incidence_historic <- incidence::incidence(data_event$fec_not,
  groups = data_event$cod_mun_o,
  interval = "1 year"
)
incidence_object <- subset(incidence_historic,
  from = "2015-01-04",
  to = "2018-12-27"
)
inc_rate <- incidence_rate(incidence_object, level = 2, scale = 100000)
inc_rate$rates
```

isco88_table isco88_table

Description

ISCO88 description of occupations

Usage

data(isco88_table)

Format

An object of class data. frame with 390 rows and 8 columns.

Details

ISCO88 occupation table

<pre>morans_index</pre>	Calculate spatial	correlation	of	given	municipalities	in	an	inci-
	dence_rate object.							

Description

Function to calculate spatial autocorrelation via Moran's Index from a given incidence_rate object grouped by municipality.

Usage

```
morans_index(incidence_object, scale = 1e+05, threshold = 2, plot = TRUE)
```

10

neighborhoods

Arguments

incidence_object	
	An incidence object with one observation for the different locations (groups).
scale	Scale to consider when calculating the incidence_rate.
threshold	Maximum traveling time around each municipality.
plot	if TRUE, returns a plot of influential observations in the Moran's plot.

Value

List of Moran's I clustering analysis, giving the quadrant of each observation, influential values.

Examples

```
data_event <- epiCo::epi_data
incidence_historic <- incidence::incidence(data_event$fec_not,
  groups = data_event$cod_mun_o,
  interval = "4 year"
)
incidence_object <- subset(incidence_historic,
  from = "2015-01-04",
  to = "2018-12-27"
)
morans_index(incidence_object, scale = 100000, threshold = 2, plot = TRUE)
```

Description

Function to build neighborhoods from real travel distances inside Colombia by land or river transportation.

Usage

```
neighborhoods(query_vector, threshold = 2)
```

Arguments

query_vector	Codes of the municipalities to consider for the neighborhoods.
threshold	Maximum traveling time around each municipality.

Value

neighborhood object according to the introduced threshold.

Examples

```
query_vector <- c("05001", "05002", "05004", "05021", "05030", "05615")
neighborhoods(query_vector, 2)</pre>
```

population_pyramid Returns the population pyramid of the consulted region

Description

Function that returns the population pyramid of the municipality or department of a specific year

Usage

```
population_pyramid(
    divipola_code,
    year,
    sex = TRUE,
    range = 5,
    total = TRUE,
    plot = FALSE
)
```

Arguments

divipola_code	A code from the divipola table representing a department or municipality. To obtain values at the national level, code '0' is used
year	A numeric input for the year of interest
sex	A boolean to consult data disaggregated by sex. The default value is TRUE
range	A numeric value from 1 to 100 for the age range to use. The default value is 5
total	A boolean for returning the total number rather than the proportion of the coun- try's population. The default value is TRUE
plot	A boolean for displaying a plot. The default value is TRUE

Value

A dataframe with the proportion or total count of individuals

Examples

```
population_pyramid("15001", 2015, sex = TRUE, total = TRUE, plot = TRUE)
```

Index

* datasets divipola_table,4 epi_data,7 isco88_table, 10 $age_risk, 2$ describe_ethnicity, 3 ${\tt describe_occupation, 4}$ divipola_table, 4 endemic_channel, 5 epi_calendar, 6 epi_data,7 $\texttt{geometric_mean, 7}$ $\texttt{geometric_sd}, \textbf{8}$ incidence_rate, 9 isco88_table, 10 $\texttt{morans_index, 10}$ neighborhoods, 11

population_pyramid, 12