
Package: epidm (via r-universe)
October 30, 2024

Version 1.0.5

Title UK Epidemiological Data Management

Description Contains utilities and functions for the cleaning,
processing and management of patient level public health data
for surveillance and analysis held by the UK Health Security
Agency, UKHSA.

URL https://github.com/alexbhatt/epidm,

https://alexbhatt.github.io/epidm/

BugReports https://github.com/alexbhatt/epidm/issues

License GPL (>= 3)

Depends R (>= 3.1)

Imports data.table, DBI, odbc, phonics, purrr, readr, stats, stringi,
stringr, utils, lubridate

Encoding UTF-8

LazyData true

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.2

Repository https://epiverse-connect.r-universe.dev

RemoteUrl https://github.com/alexbhatt/epidm

RemoteRef HEAD

RemoteSha 6fa12b907c618e9cc237634ec974531317f2b712

Contents
cip_spells . 2
csv_from_zip . 5
genus_gram_stain . 5
group_ecds_discharge_destination . 6
group_inpatient_admission_method . 6
group_inpatient_discharge_destination . 7

1

https://github.com/alexbhatt/epidm
https://alexbhatt.github.io/epidm/
https://github.com/alexbhatt/epidm/issues

2 cip_spells

group_time . 7
hospital_in_out_dates . 9
inpatient_codes . 11
lab_data . 15
lookup_recode . 16
proxy_episode_dates . 17
respeciate_generic . 19
respeciate_organism . 20
specimen_type_grouping . 21
sql_clean . 21
sql_connect . 22
sql_read . 23
sql_write . 23
uk_patient_id . 24
valid_nhs . 26

Index 27

cip_spells Continuous Inpatient (CIP) Spells

Description

[Stable]

A continuous inpatient (CIP) spell is a continuous period of care within the NHS, which does allow
specific types of transfers to take place. It can therefore be made up of one or more provider spells.
A CIP spell starts when a decision has been made to admit the patient, and a consultant has taken re-
sponsibility for their care. The spell ends when the patient dies or is discharged from hospital. This
follows the NHS Digital Provider Spells Methodology: http://content.digital.nhs.uk/media/11859/Provider-
Spells-Methodology/pdf/Spells_Methodology.pdf

Usage

cip_spells(
x,
group_vars,
spell_start_date,
admission_method,
admission_source,
spell_end_date,
discharge_destination,
patient_classification,
.forceCopy = FALSE

)

cip_spells 3

Arguments

x a data frame; will be converted to a data.table

group_vars a vector containing any variables to be used for record grouping, minimum is a
patient identifier

spell_start_date

Inpatient provider spell or episode admission date
admission_method

CDS admission method code
admission_source

CDS admission source code

spell_end_date Inpatient provider spell or episode discharge date
discharge_destination

CDS discharge destination code
patient_classification

CDS patient classification code

.forceCopy default FALSE; TRUE will force data.table to take a copy instead of editing the
data without reference

Value

the original data.frame as a data.table with the following new fields:

cip_indx an id field for the CIP spell

cip_spell_start the start date for the CIP spell

cip_spell_end the end date for the CIP spell

Examples

cip_test <- data.frame(
id = c('465','465','465','465','8418','8418','8418',

'8418','8418','8418','8418','8418','26443',
'26443','26443','33299','33299','33299','33299',
'33299','33299','33299','33299','33299','33299',
'52635','52635','52635','52635','52635','52635',
'52635','52635','52635','52635','52635','52635',
'52635','52635','52635','52635','52635','52635',
'52635','52635','52635','52635','52635','52635',
'52635','52635','52635','78915','78915','78915'),

provider = c('X1T','X1T','X1T','X1T','KHA','KHA','KHA',
'KHA','KHA','KHA','KHA','KHA','BX2','BX2',
'BX2','PXH','PXH','PXH','PXH','PXH','PXH',
'PXH','PXH','PXH','PXH','9HA','9HA','9HA',
'9HA','9HA','9HA','9HA','9HA','9HA','9HA',
'9HA','9HA','9HA','9HA','9HA','9HA','YYT',
'YYT','YYT','YYT','YYT','YYT','YYT','YYT',
'YYT','YYT','YYT','ABX','ABX','ABX'),

spell_start = as.Date(c(
'2020-03-07','2020-03-07','2020-03-25','2020-04-03','2020-01-25',

4 cip_spells

'2020-01-26','2020-07-14','2020-08-02','2020-08-12','2020-08-19',
'2020-08-19','2020-11-19','2019-11-12','2020-04-17','2020-04-23',
'2020-07-03','2020-01-17','2020-02-07','2020-03-20','2020-04-27',
'2020-06-21','2020-07-02','2020-10-17','2020-11-27','2021-01-02',
'2019-12-31','2020-01-02','2020-01-14','2020-01-16','2020-02-07',
'2020-02-11','2020-02-14','2020-02-18','2020-02-21','2020-02-25',
'2020-02-28','2020-03-09','2020-03-11','2020-03-12','2020-03-13',
'2020-03-14','2020-02-04','2020-02-07','2020-02-11','2020-02-14',
'2020-02-18','2020-02-21','2020-02-25','2020-02-28','2020-03-09',
'2020-03-11','2020-03-12','2020-04-16','2020-04-24','2020-05-13')),

spell_end = as.Date(c(
'2020-03-07','2020-03-25','2020-04-02','2020-04-27','2020-01-25',
'2020-01-27','2020-07-17','2020-08-07','2020-08-14','2020-08-19',
'2020-08-22','2020-12-16','2020-04-17','2020-04-23','2020-05-20',
'2020-07-24','2020-01-28','2020-02-07','2020-03-23','2020-04-29',
'2020-06-21','2020-07-03','2020-11-27','2021-01-02','2021-01-10',
'2019-12-31','2020-01-11','2020-01-14','2020-02-04','2020-02-07',
'2020-02-11','2020-02-14','2020-02-18','2020-02-21','2020-02-25',
'2020-02-28','2020-03-09','2020-03-11','2020-03-12','2020-03-13',
'2020-03-30','2020-02-07','2020-02-11','2020-02-14','2020-02-18',
'2020-02-21','2020-02-25','2020-02-28','2020-03-09','2020-03-11',
'2020-03-12','2020-03-13','2020-04-24','2020-05-13','2020-06-11')),

adm_meth = c('21','81','21','81','21','21','11','21','21','21','21',
'21','21','81','21','81','21','21','21','21','21','21',
'21','13','13','12','22','12','2D','13','13','13','13',
'13','13','13','13','13','13','13','21','81','81','81',
'81','81','13','81','81','13','13','13','21','11','81'),

adm_src = c('19','51','19','51','19','51','19','51','19','19','19',
'51','19','51','19','51','19','19','19','19','19','19',
'19','51','19','19','19','19','19','19','19','19','19',
'19','19','19','51','51','51','51','19','51','51','51',
'51','51','51','51','51','51','51','51','19','51','51'),

dis_meth = c('1','1','1','1','1','1','1','1','1','1','1','4','1','1',
'4','1','1','1','1','1','1','1','8','1','4','1','1','1',
'1','1','1','1','1','1','1','1','1','1','1','1','1','1',
'1','1','1','1','1','1','1','1','1','1','1','1','2'),

dis_dest = c('51','51','51','54','51','19','19','19','19','51','19',
'79','51','51','79','65','19','19','19','19','19','29',
'98','51','79','19','19','19','51','19','19','19','51',
'51','51','19','19','51','51','19','51','51','51','51',
'51','51','51','51','51','51','51','51','29','54','19'),

patclass = c('1','1','1','1','1','1','1','1','1','1','1','1','1','1',
'1','1','1','1','1','1','1','1','1','1','1','2','1','2',
'1','2','2','2','2','2','2','2','2','2','2','2','1','1',
'1','1','1','1','1','1','1','1','1','1','1','1','1')

)

cip_spells(x=cip_test,
group_vars = c('id','provider'),
patient_classification = 'patclass',
spell_start_date = 'spell_start',
admission_method = 'adm_meth',
admission_source = 'adm_src',

csv_from_zip 5

spell_end_date = 'spell_end',
discharge_destination = 'dis_dest'

)[]

csv_from_zip Download a csv from a zip

Description

[Stable] A convenience function to allow you to pull data from NHS, ONS and ODR assets

Usage

csv_from_zip(x)

Arguments

x a zip file from the web

Value

a zip file for ingestion into your chosen readr

Examples

Not run:
read.csv(csv_from_zip("https://files.digital.nhs.uk/assets/ods/current/succarc.zip"))

End(Not run)

genus_gram_stain Bacterial Genus Gram Stain Lookup Table

Description

A reference table of bacterial gram stain results by genus to allow faster filtering of bacterial results.
This dataset has been maintained manually against the PHE SGSS database. If there are organisms
missing, please raise and issue or push request on the epidm GitHub

Usage

genus_gram_stain

https://github.com/alexbhatt/epidm

6 group_inpatient_admission_method

Format

A data frame with four columns

organism_genus The bacterial genus
gram_stain A character string to indicate POSITIVE or NEGATIVE type
gram_positive A 0/1 flag to indicate if the genus is gram positive
gram_negative A 0/1 flag to indicate if the genus is gram negative

group_ecds_discharge_destination

A&E attendance discharge destination

Description

In order to group A&E discharge destination from SNOWMED into human readable groups, a
lookup table has been created. These work with Emergency Care Dataset (ECDS) data with the
destination_code field to show where a patient goes after discharge from A&E.

Usage

group_ecds_discharge_destination

Format

code the ECDS destination_code
destination_code the destination grouping as a human readable string

group_inpatient_admission_method

Inpatient admission methods

Description

In order to group hospital inpatient admissions into human readable groups, a lookup table has been
created. These work with Hospital Episode Statistics (HES) and Secondary Use Services (SUS)
data with the admission_method fields.

Usage

group_inpatient_admission_method

Format

code the admission_method code
admission_method the admission_method grouping as a human readable string

group_inpatient_discharge_destination 7

group_inpatient_discharge_destination

Inpatient discharge destination

Description

In order to group hospital inpatient discharge destination into human readable groups, a lookup table
has been created. These work with Hospital Episode Statistics (HES) and Secondary Use Services
(SUS) data with the discharge_destination fields.

Usage

group_inpatient_discharge_destination

Format

code the discharge_destination code

discharge_destination the discharge_destination grouping as a human readable string

group_time Grouping of intervals or events in time together

Description

[Stable]
Group across multiple observations of overlapping time intervals, with defined start and end dates,
or events within a static/fixed or rolling window of time. These are commonly used with inpatient
HES/SUS data to group spells with defined start and end dates, or to group positive specimen tests,
based on specimen dates together into infection episodes.

Usage

group_time(
x,
date_start,
date_end,
window,
window_type = c("rolling", "static"),
group_vars,
indx_varname = "indx",
min_varname = "date_min",
max_varname = "date_max",
.forceCopy = FALSE

)

8 group_time

Arguments

x data frame, this will be converted to a data.table

date_start column containing the start dates for the grouping, provided quoted

date_end column containing the end dates for the interval, quoted

window an integer representing a time window in days which will be applied to the start
date for grouping events

window_type character, to determine if a ’rolling’ or ’static’ grouping method should be used
when grouping events

group_vars in a vector, the all columns used to group records, quoted

indx_varname a character string to set variable name for the index column which provides a
grouping key; default is indx

min_varname a character string to set variable name for the time period minimum

max_varname a character string set variable name for the time period maximum

.forceCopy default FALSE; TRUE will force data.table to take a copy instead of editing the
data without reference

Value

the original data.frame as a data.table with the following new fields:

indx; renamed using indx_varname an id field for the new aggregated events/intervals; note that
where the date_start is NA, an indx value will also be NA

min_date; renamed using min_varname the start date for the aggregated events/intervals

max_date; renamed using max_varname the end date for the aggregated events/intervals

Examples

episode_test <- structure(
list(
pat_id = c(1L, 1L, 1L, 1L, 2L, 2L, 2L,

1L, 1L, 1L, 1L, 2L, 2L, 2L),
species = c(rep("E. coli",7),rep("K. pneumonia",7)),
spec_type = c(rep("Blood",7),rep("Blood",4),rep("Sputum",3)),
sp_date = structure(c(18262, 18263, 18281, 18282, 18262, 18263, 18281,

18265, 18270, 18281, 18283, 18259, 18260, 18281),
class = "Date")

),
row.names = c(NA, -14L), class = "data.frame")

group_time(x=episode_test,
date_start='sp_date',
window=14,
window_type = 'static',
indx_varname = 'static_indx',
group_vars=c('pat_id','species','spec_type'))[]

spell_test <- data.frame(

hospital_in_out_dates 9

id = c(rep(99,6),rep(88,4),rep(3,3)),
provider = c("YXZ",rep("ZXY",5),rep("XYZ",4),rep("YZX",3)),
spell_start = as.Date(

c(
"2020-03-01",
"2020-07-07",
"2020-02-08",
"2020-04-28",
"2020-03-15",
"2020-07-01",
"2020-01-01",
"2020-01-12",
"2019-12-25",
"2020-03-28",
"2020-01-01",
rep(NA,2)

)
),
spell_end = as.Date(

c(
"2020-03-10",
"2020-07-26",
"2020-05-22",
"2020-04-30",
"2020-05-20",
"2020-07-08",
"2020-01-23",
"2020-03-30",
"2020-01-02",
"2020-04-20",
"2020-01-01",
rep(NA,2)

)
)

)

group_time(x = spell_test,
date_start = 'spell_start',
date_end = 'spell_end',
group_vars = c('id','provider'),
indx_varname = 'spell_id',
min_varname = 'spell_min_date',
max_varname = 'spell_max_date')[]

hospital_in_out_dates Hospital IN/OUT dates

Description

This function helps to determine when a patient has been in hospital across spell aggregation. When
retaining the final record the following criteria is used:

10 hospital_in_out_dates

"1" Current admissions take priority

"2" When conflicting on the same day, inpatient admissions take priority over A&E emergency
care data

"3" Where a patient has a linked A&E admission to a hospital inpatient stay, the A&E admission
date is used

"4" Where a patient has a positive test between two hospital stays the most recent completed
hospital stay prior to the test is retained except if the time between these events is greater than
14 days, then the first admission following the test is retained

Usage

hospital_in_out_dates(
data,
person_id = "id",
hospital = list(org_code = "organisation_code_of_provider", event_date = "ev_date",

ae_arrive = "arrival_date", ae_depart = "departure_date", ae_discharge =
"ecds_discharge", in_spell_start = "spell_start_date", in_spell_end =
"spell_end_date", in_discharge = "discharge_destination")

)

Arguments

data the linked asset holding A&E and Inpatient data

person_id the column containing the unique patient ID

hospital a list containing the following items

org_code the NHS trust organisation codes
event_date the comparison date used; often specimen_date

ae_arrive the ECDS arrival date
ae_depart the ECDS discharge date
ae_discharge the ECDS discharge status; recommend grouping from epidm::lookup_recode

in_spell_start the HES/SUS spell start date; recommend after epidm::group_time
in_spell_end the HES/SUS spell end date; recommend after epidm::group_time
in_discharge the HES/SUS discharge destination code; recommend grouping

from epidm::lookup_recode

Value

new date columns on the data.table for hospital_in and hospital_out and hospital_event_rank

See Also

epidm::lookup_recode()

epidm::group_time()

epidm::cip_spells()

inpatient_codes 11

Examples

Not run:
hospital_in_out_dates(link,
person_id = 'id',
hospital = list(

org_code = 'organisation_code_of_provider',
event_date = 'ev_date',
ae_arrive = 'arrival_date',
ae_depart = 'departure_date',
ae_discharge = 'ecds_discharge',
in_spell_start = 'spell_start_date',
in_spell_end = 'spell_end_date',
in_discharge = 'discharge_destination'

))[]

End(Not run)

inpatient_codes Inpatient Codes cleanup

Description

[Experimental]
When HES/SUS ICD/OPCS codes are provided in wide format you may want to clean them up into
long for easier analysis. This function helps by reshaping long as a separate table. Ensuring they’re
separate allows you to retain source data, and aggregate appropriately later.

Usage

inpatient_codes(
x,
field_strings,
patient_id_vars,
type = c("icd9", "icd10", "opcs"),
.forceCopy = FALSE

)

Arguments

x a data.frame or data.table containing inpatient data

field_strings a vector or string containing the regex for the the columns
patient_id_vars

a vector containing colnames used to identify a patient episode or spell

type a string to denote if the codes are diagnostic or procedural

.forceCopy default FALSE; TRUE will force data.table to take a copy instead of editing the
data without reference

12 inpatient_codes

Value

a separate table with codes and id in long form

Examples

inpatient_test <- data.frame(
id = c(1053L,5487L,8180L,528L,1085L,344L,2021L,2040L,

6504L,10867L,12411L,7917L,2950L,2812L,7757L,12227L,2675L,
8548L,536L,11830L,12708L,10421L,5503L,2494L,14001L),

spell_id = c("dwPDw","iSpUq","qpgk5","8vrJ1","BAur9","l6LZk",
"KJllb","tgZID","fJkh8","Y9IPv","DAlUZ",
"9Ooc4","hUxGn","wtMG9","dw3dO","cz3fI",
"gdxZK","npplb","tynBh","Uu0Sd","gV1Ac",
"vOpA1","ttlcD","Fqo29","ivTmN"),

primary_diagnosis_code = c("K602","U071-","I501","U071 ","J22X","J189",
"J189","I951","N130","U071","K510 D",NA,
"G409-","C780","N185","J955","K573","U071",
"I330","L309","M513","U071","A419","U071",
"N185-"),

secondary_diagnosis_code_1 = c("K641","J128-","I489","J128 ","Q348","F059",
"R296","R296","N131","J128","M0750A",NA,
"R401-","C782","Z491","C321","D125","J128",
"B952","J459","M4780","B972","N390","J128",
"Z491-"),

secondary_diagnosis_code_2 = c("E039","B972-","I10X","L031 ","Z115","I509",
"F051","I251","K862","B972","K590-",NA,
"E876-","C798","N085","Z938","I209","B972",
"I214","Z880","M8588","R296","B962","B972",
NA),

secondary_diagnosis_code_3 = c("I422","J9691","E119","I489 ","D509","I489",
"D509","I252","T391","J440","R21X-",NA,
"R945-","E119","M310","I480","I252","J9690",
"E111",NA,"Z115","R410","J181","Z518",NA),

secondary_diagnosis_code_4 = c(NA,"I10X-","E669","E109 ","K219","Z921","I251",
"I259","R458","B972","F200-",NA,"E039-",
"I10X",NA,"I500","F171","I489","E162",NA,
"I480","M2551","L892","E86X",NA),

secondary_diagnosis_code_5 = c(NA,"E119-","J449","F03X ",NA,"Z518","I252",
"I209","C61X","A419","R761-",NA,"E119-",
"K219",NA,"Z115","F329","N179","N179",NA,
"H353","Z638","L033","R54X",NA),

secondary_diagnosis_code_6 = c(NA,NA,"Z966","I10X ",NA,"N179","N183","Z115",
"K627","N390",NA,NA,"J459-","M4780",NA,
"Z900",NA,"I10X","R34X",NA,"I951","I10X",
"D510","F059",NA),

secondary_diagnosis_code_7 = c(NA,NA,"Z854","I679 ",NA,"N183","Z951","M190",
"R634","L031",NA,NA,"I10X-","M512",NA,
"Z921",NA,"E119","I959",NA,"H903","I678",
"K639","F03X",NA),

secondary_diagnosis_code_8 = c(NA,NA,"Z864","J459 ",NA,"E115","E119","N183",
"E111","E871",NA,NA,"R51X-","H409",NA,
"Z870",NA,NA,"J90X",NA,"M199","J459",

inpatient_codes 13

"N133","F29X",NA),
secondary_diagnosis_code_9 = c(NA,NA,"Z921","R296 ",NA,"L97X","I10X","M4806",

"E114","S099",NA,NA,"Q070-","H544",NA,
NA,NA,NA,"I501",NA,"K811","F03X","J90X",
"N189",NA),

secondary_diagnosis_code_10 = c(NA,NA,NA,"Z921 ",NA,"L089","Z921","N40X",
"G590","R296",NA,NA,"E668-","Z858",NA,NA,NA,
NA,"I489",NA,"K219","G20X","N202",
"F719",NA),

secondary_diagnosis_code_11 = c(NA,NA,NA,"Z515 ",NA,"R02X","Z507","Z864",
"E162","I489",NA,NA,"G473-","Z923",NA,NA,NA,
NA,"I447",NA,"J459","E119","L031",
"Z960",NA),

secondary_diagnosis_code_12 = c(NA,NA,NA,"Z501 ",NA,"B370","K579","Z955",
"E46X","Z921",NA,NA,"R600-","Z926",NA,NA,NA,
NA,"E86X",NA,"I10X",NA,"J981","Z922",
NA),

secondary_diagnosis_code_13 = c(NA,NA,NA,"Z507 ",NA,"E039","M109",NA,"I259",
"K709",NA,NA,"M1999","Z895",NA,NA,NA,NA,
"R33X",NA,"J40X",NA,"E119",NA,NA),

secondary_diagnosis_code_14 = c(NA,NA,NA,NA,NA,NA,"J459",NA,"N131","Z864",NA,
NA,"R468-","Z902",NA,NA,NA,NA,"R296",
NA,NA,NA,"I739",NA,NA),

secondary_diagnosis_code_15 = c(NA,NA,NA,NA,NA,NA,"Z880",NA,"K862","Z501",NA,
NA,"Z115-","Z971",NA,NA,NA,NA,"R468",
NA,NA,NA,"N183",NA,NA),

secondary_diagnosis_code_16 = c(NA,NA,NA,NA,NA,NA,"Z867",NA,"T391","Z505",NA,
NA,"Z501-","Z878",NA,NA,NA,NA,"R31X",
NA,NA,NA,"I489",NA,NA),

secondary_diagnosis_code_17 = c(NA,NA,NA,NA,NA,NA,"Z864",NA,"R458","Z518",NA,
NA,"Z507-","Z958",NA,NA,NA,NA,"Z115",
NA,NA,NA,"M549",NA,NA),

secondary_diagnosis_code_18 = c(NA,NA,NA,NA,NA,NA,"F03X",NA,"C61X",NA,NA,NA,
NA,"Z867",NA,NA,NA,NA,"I252",NA,NA,
NA,"I252",NA,NA),

secondary_diagnosis_code_19 = c(NA,NA,NA,NA,NA,NA,NA,NA,"K627",NA,NA,NA,NA,
"Z864",NA,NA,NA,NA,"I259",NA,NA,NA,
"I259",NA,NA),

secondary_diagnosis_code_20 = c(NA,NA,NA,NA,NA,NA,NA,NA,"R634",NA,NA,NA,NA,
"Z880",NA,NA,NA,NA,"I10X",NA,NA,NA,
"E669",NA,NA),

secondary_diagnosis_code_21 = c(NA,NA,NA,NA,NA,NA,NA,NA,"E111",NA,NA,NA,NA,
"Z800",NA,NA,NA,NA,"I352",NA,NA,NA,
"Z867",NA,NA),

secondary_diagnosis_code_22 = c(NA,NA,NA,NA,NA,NA,NA,NA,"E114",NA,NA,NA,NA,
"Z801",NA,NA,NA,NA,"R15X",NA,NA,NA,
"Z896",NA,NA),

secondary_diagnosis_code_23 = c(NA,NA,NA,NA,NA,NA,NA,NA,"G590",NA,NA,NA,NA,
NA,NA,NA,NA,NA,"R32X",NA,NA,NA,
"Z960",NA,NA),

secondary_diagnosis_code_24 = c(NA,NA,NA,NA,NA,NA,NA,NA,"E162",NA,NA,NA,NA,
NA,NA,NA,NA,NA,"R418",NA,NA,NA,
"Z874",NA,NA),

14 inpatient_codes

primary_procedure_code = c("H289",NA,"K634",NA,"X292",NA,NA,NA,NA,NA,
"H251",NA,"U051","L913","X403",NA,"H231",
"U071","M473","X384",NA,NA,NA,NA,"X403"),

primary_procedure_date = c("20170730",NA,"20201202",NA,"20170914",NA,NA,NA,
NA,NA,"20210105",NA,"20170724",
"20210111","20171114",NA,"20170622","20210104",
"20171013","20170313",NA,NA,NA,NA,
"20171107"),

secondary_procedure_code_1 = c("H626",NA,"Y534",NA,"U297",NA,NA,NA,NA,NA,
"Z286",NA,"Y981","Y031",NA,NA,"Z286",
"Y981",NA,NA,NA,NA,NA,NA,NA),

secondary_procedure_date_1 = c("20170730",NA,"20201202",NA,"20170928",NA,NA,NA,
NA,NA,"20210105",NA,"20170724",
"20210111",NA,NA,"20170622","20210104",NA,NA,NA,
NA,NA,NA,NA),

secondary_procedure_code_2 = c("H444",NA,"Z941",NA,NA,NA,NA,NA,NA,NA,NA,NA,
"U212",NA,NA,NA,NA,NA,NA,NA,NA,NA,
NA,NA,NA),

secondary_procedure_date_2 = c("20170730",NA,"20201202",NA,NA,NA,NA,NA,NA,NA,
NA,NA,"20170729",NA,NA,NA,NA,NA,NA,
NA,NA,NA,NA,NA,NA),

secondary_procedure_code_3 = c(NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Y973",
NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,
NA),

secondary_procedure_date_3 = c(NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,
"20170729",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,
NA,NA),

secondary_procedure_code_4 = c(NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Y982",
NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,
NA),

secondary_procedure_date_4 = c(NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,
"20170729",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,
NA,NA),

secondary_procedure_code_5 = c(NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"Z926",
NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,
NA),

secondary_procedure_date_5 = c(NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,
"20170729",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,
NA,NA),

secondary_procedure_code_6 = c(NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,"O161",
NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,
NA),

secondary_procedure_date_6 = c(NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,
"20170729",NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,
NA,NA)

)

inpatient_codes(x=inpatient_test,
field_strings='diagnosis',
patient_id_vars = c('id','spell_id'),
type = 'icd10')

inpatient_codes(x=inpatient_test,

lab_data 15

field_strings=c('procedure_code','procedure_date'),
patient_id_vars = c('id','spell_id'),
type = 'opcs')

lab_data Synthetic Lab Data for epidm

Description

A dataset containing synthetic lab data for testing epidemiological data transformation functions.

Usage

data(lab_data)

Format

A data frame with the following columns:

nhs_number NHS number

local_patient_identifier Patient identifier such as hospital number

patient_birth_date Date of birth of the patients.

sex Gender of the patients (Factor with levels: "Female", "Male").

surname Patient surname

forename Patient forename

organism_species_name Organism species name (Factor with levels: "KLEBSIELLA PNEUMO-
NIAE").

specimen_date Date of specimen collection.

specimen_type Type of specimen: BLOOD or URINE.

lab_code Laboratory codes (Factor with unique levels).

local_authority_name Name of the local authority.

local_authority_code Code of the local authority.

postcode Postcode

Examples

data(lab_data)
head(lab_data)

16 lookup_recode

lookup_recode Lookup table switch handler

Description

[Stable] A function to call an epidm lookup table and recode where we are aware of a new value.

Built in are the organism re-classifications and specimen_type groupings and a manual mode.

Usage

lookup_recode(
src,
type = c("species", "specimen", "inpatient_admission_method",
"inpatient_discharge_destination", "ecds_destination_code", "manual"),

.import = NULL
)

Arguments

src a character, vector or column containing the value(s) to be referenced

type a character value to denote the lookup table used

.import a list in the order list(new,old) containing the values for another lookup table
existing in the environment

Value

a list object of the recoded field

Examples

df <- data.frame(
spec = c(

sample(grep(")",
respeciate_organism$previous_organism_name,
value=TRUE,
invert = TRUE),

9),
"ESCHERICHIA COLI","SARS-COV-2","CANDIDA AUREUS"),

type = sample(specimen_type_grouping$specimen_type,12),
date = sample(seq.Date(from = Sys.Date()-365,

to = Sys.Date(),
by = "day"),12)

)
df <- df[order(df$date),]

show the data before the changes
df

proxy_episode_dates 17

check the lookup tables
observe the changes
head(respeciate_organism[1:2])
df$species <- lookup_recode(df$spec,'species')
df[,c('spec','species','date')]

head(specimen_type_grouping)
df$grp <- lookup_recode(df$type,'specimen')
df[,c('species','type','grp','date')]

for a tidyverse use
df %>% mutate(spec=lookup_recode(spec,'species))

manual input of your own lookup
.import=list(new,old)
lookup_recode(

"ALCALIGENES DENITRIFICANS",
type = 'manual',
.import=list(respeciate_organism$organism_species_name,

respeciate_organism$previous_organism_name)
)

proxy_episode_dates HES/SUS Episode Date Cleaning

Description

[Stable]
Correcting for missing end dates on HES/SUS episodes

Usage

proxy_episode_dates(
x,
group_vars,
spell_start_date,
spell_end_date,
discharge_destination,
.dropTmp = TRUE,
.forceCopy = FALSE

)

Arguments

x a data frame; will be converted to a data.table

group_vars a vector containing any variables to be used for record grouping, minimum is a
patient identifier

18 proxy_episode_dates

spell_start_date

Inpatient provider spell or episode admission date

spell_end_date Inpatient provider spell or episode discharge date
discharge_destination

CDS discharge destination code

.dropTmp default TRUE; a logical to drop all tmp values used

.forceCopy default FALSE; TRUE will force data.table to take a copy instead of editing the
data without reference

Value

a data.table with cleaned start and end dates, and an indicator proxy_missing where the value has
changed

Examples

proxy_test <- data.frame(
id = c(

rep(3051, 4),
rep(7835,3),
rep(9891,3),
rep(1236,3)

),
provider = c(

rep("QKJ", 4),
rep("JSD",3),
rep("YJG",3),
rep("LJG",3)

),
spell_start = as.Date(c(

"2020-07-03", "2020-07-14", "2020-07-23", "2020-08-05",
"2020-11-01", "2020-11-13", "2020-12-01",
"2020-03-28", "2020-04-06", "2020-04-09",
"2020-10-06", "2020-11-05", "2020-12-25"

)),
spell_end = as.Date(c(

"2020-07-11", "2020-07-22", "2020-07-30", "2020-07-30",
"2020-11-11", NA, "2020-12-03",
"2020-03-28", NA, "2020-04-09",
"2020-10-06", "2020-11-05", NA

)),
disdest = c(

19, 19, 51, 19,
19, 19, 19,
51, 98, 19,
19, 19, 98

)
)

proxy_episode_dates(

respeciate_generic 19

x=proxy_test,
group_vars = c('id','provider'),
spell_start_date = 'spell_start',
spell_end_date = 'spell_end',
discharge_destination = 'disdest'

)[]

respeciate_generic Respeciate unspecified samples

Description

[Stable]

Some samples within SGSS are submitted by laboratories as "GENUS SP" or "GENUS UNNAMED".
However, they may also have a fully identified sample taken from the same site within a recent time
period. This function captures species_col from another sample within X-days of an unspeciated
isolate.

Usage

respeciate_generic(
x,
group_vars,
species_col,
date_col,
window = c(0:Inf),
.forceCopy = FALSE

)

Arguments

x a data.frame or data.table object

group_vars the minimum grouping set of variables for like samples in a character vector;
suggest c(’patient_id’,’specimen_type’,’genus’)

species_col a character containing the column with the organism species_col name

date_col a character containing the column with the specimen/sample date_col

window an integer representing the number of days for which you will allow a sample to
be respeciated

.forceCopy default FALSE; TRUE will force data.table to take a copy instead of editing the
data without reference

Value

a data.table with a recharacterised species_col column

20 respeciate_organism

Examples

df <- data.frame(
ptid = c(round(runif(25,1,5))),
spec = sample(c("KLEBSIELLA SP",

"KLEBSIELLA UNNAMED",
"KLEBSIELLA PNEUMONIAE",
"KLEBEIELLA OXYTOCA"),

25,replace = TRUE),
type = "BLOOD",
specdate = sample(seq.Date(Sys.Date()-21,Sys.Date(),"day"),25,replace = TRUE)
)

respeciate_generic(x=df,
group_vars=c('ptid','type'),
species_col='spec',
date_col='specdate',
window = 14)[]

respeciate_organism Respeciated organisms

Description

Occasionally, research shows that two organisms, previously thought to be different are in fact one
and the same. The reverse is also true. This is a manually updated list. If there are organisms
missing, or new respeciates to be added, please raise and issue or push request on the epidm GitHub

Usage

respeciate_organism

Format

previous_organism_name What the organism used to be known as, in the form GENUS SPECIES

organism_species_name What the organism is known as now, in the form GENUS SPECIES

organism_genus_name The genus of the recoded organism

genus_change A 0/1 flag to indicate if the genus has changed

genu_all_species A 0/1 flag to indicate if all species under that genus should change

https://github.com/alexbhatt/epidm

specimen_type_grouping 21

specimen_type_grouping

Specimen type grouping

Description

In order to help clean up an analysis based on a group of specimen types, a lookup table has been
created to help group sampling sites. This is a manually updated list. If there are organisms missing,
or new respeciates to be added, please raise and issue or push request on the epidm GitHub

Usage

specimen_type_grouping

Format

specimen_type The primary specimen type with detail

specimen_group A simple grouping of like specimen sites

sql_clean Clean and Read a SQL query

Description

[Stable]

A utility function to read in a SQL query from a character object, clipboard or text file and remove
all comments for use with database query packages

Usage

sql_clean(sql)

Arguments

sql a SQL file or text string

Value

a cleaned SQL query without comments as a character string

https://github.com/alexbhatt/epidm

22 sql_connect

Examples

testSQL <- c(
"/********* INTRO HEADER COMMENTS",
"*********/",
" SELECT ",
" [VAR 1] -- with comments",
",[VAR 2]",",[VAR 3]",
"FROM DATASET ","-- output here")
sql_clean(testSQL)

sql_connect Connect to a SQL database

Description

[Stable]
An function to help setup connections to SQL databases acting as a wrapper for the odbc and DBI
packages. Used by other sql_* tools within epidm. This uses the credential manager within the
system and assumes you are using a trusted connection.

Usage

sql_connect(server, database)

Arguments

server a string containing the server connection; note that servers may require the use
of double backslash \\

database a string containing the database name within the data store

Value

a SQL connection object

See Also

sql_clean sql_read sql_write

Examples

Not run:
sql <- list(

dsn = list(ser = 'covid.ukhsa.gov.uk',
dbn = 'infections')

)

sql_read 23

sgss_con = sql_connect(server = sqldsnser, database = sqldsndbn)

End(Not run)

sql_read Read a table from a SQL database

Description

[Stable]

Read a table object to a SQL database. Acts a wrapper for odbc and DBI packages.

Usage

sql_read(server, database, sql)

Arguments

server a string containing the server connection

database a string containing the database name within the data store

sql a string containing a SQL query or to a .sql/.txt SQL query

Value

a table from a SQL database

See Also

sql_clean sql_connect

sql_write Write a table to a SQL database

Description

[Stable]

Write a table object to a SQL database. Acts a wrapper for odbc and DBI packages with additional
checks to ensure upload completes.

Usage

sql_write(x, server, database, tablename)

24 uk_patient_id

Arguments

x a data.frame/data.table/tibble object
server a string containing the server connection
database a string containing the database name within the data store
tablename a string containing the chosen SQL database table name

Value

writes a data.frame/data.table/tibble to a SQL database

uk_patient_id Patient ID record grouping

Description

[Stable]
Groups patient records from multiple isolates with a single integer patientID by grouping patient
identifiers.

Grouping is based on the following stages:

1. matching nhs number and date of birth
2. Hospital number & Date of Birth
3. NHS number & Hospital Number
4. NHS number & Name
5. Hospital number & Name
6. Sex & Date of Birth & Surname
7. Sex & Date of Birth & Fuzzy Name
8. Sex & Year and Month of Birth & Fuzzy Name
9. Postcode & Name

10. Name Swaps (when first and last name are the wrong way around)

Identifiers are copied over where they are missing or invalid to the grouped records.

Usage

uk_patient_id(
data,
id = list(nhs_number = "nhs_number", hospital_number = "patient_hospital_number",
date_of_birth = "date_of_birth", sex_mfu = "sex", forename = "forename", surname =
"surname", postcode = "postcode"),

.useStages = c(1:11),

.sortOrder,

.keepValidNHS = FALSE,

.forceCopy = FALSE
)

uk_patient_id 25

Arguments

data a data.frame or data.table containing the patient data

id a named list to provide the column names with identifiers, quoted

nhs_number the patient NHS number
hospital_number the patient Hospital numbers also known as the local patient

identifier
date_of_birth the patient date of birth
sex_mfu the patient sex or gender field as Male/Female/Unknown
forename the patient forename
surname the patient surname
postcode the patient postcode

.useStages optional, default 1:11; set to 1 if you wish patient ID to be assigned cases with
the same DOB and NHS number, set to 2 if you wish patient ID to be assigned
to cases with the same hospital number (HOS) and DOB, set to 3 if you wish
patient ID to be assigned cases with the same NHS and HOS number, set to
4 if you wish patient ID to be assigned cases with the same NHS number and
surname, set to 5 if you wish patient ID to be assigned cases with the same
hospital number and surname, set to 6 if you wish patient ID to be assigned
cases with the same DOB and surname, set to 7 if you wish patient ID to be
assigned cases with the same sex and full name, set to 8 if you wish patient ID
to be assigned cases with the same sex, DOB and fuzzy name, set to 9 if you
wish patient ID to be assigned cases with the same DOB and fuzzy name, set to
10 if you wish patient ID to be assigned cases with the same name and postcode,
set to 11 if you wish patient ID to be assigned cases with the same first name or
second name in changing order and date of birth.

.sortOrder optional; a column as a character to allow a sorting order on the id generation

.keepValidNHS optional, default FALSE; set TRUE if you wish to retain the column with the
NHS checksum result stored as a BOOLEAN

.forceCopy optional, default FALSE; TRUE will force data.table to take a copy instead of
editing the data without reference

Value

A dataframe with one new variable:

id a unique patient id

valid_nhs if retained using argument .keepValidNHS=TRUE, a BOOLEAN containing the result
of the NHS checksum validation

Examples

uk_patient_id(
data = head(epidm::lab_data),
id = list(
nhs_number = 'nhs_number',
hospital_number = 'local_patient_identifier',

26 valid_nhs

date_of_birth = 'patient_birth_date',
sex_mfu = 'sex',
forename = 'forename',
surname = 'surname'
postcode = 'postcode'

),
.sortOrder = 'specimen_date',
.forceCopy = TRUE

)[]

valid_nhs NHS Number Validity Check

Description

[Stable]
Check if NHS numbers are valid based on the checksum algorithm

This uses the first 9 digits, multiplied by 10 down to 2 eg digit 1x10, d2x9

The sum of the products of the first 9 digits are divided by 11

The remainder is checked against the 10th digit

Where the remainder is 11, it is replaced with 0

Usage

valid_nhs(nhs_number)

Arguments

nhs_number a vector

Value

a vector, 1 if NHS number is valid, 0 if not valid

Examples

test <- floor(runif(1000,1000000000,9999999999))
valid_nhs(test)
valid_nhs(9434765919)

Index

∗ datasets
genus_gram_stain, 5
group_ecds_discharge_destination,

6
group_inpatient_admission_method,

6
group_inpatient_discharge_destination,

7
lab_data, 15
respeciate_organism, 20
specimen_type_grouping, 21

cip_spells, 2
csv_from_zip, 5

genus_gram_stain, 5
group_ecds_discharge_destination, 6
group_inpatient_admission_method, 6
group_inpatient_discharge_destination,

7
group_time, 7

hospital_in_out_dates, 9

inpatient_codes, 11

lab_data, 15
lookup_recode, 16

proxy_episode_dates, 17

respeciate_generic, 19
respeciate_organism, 20

specimen_type_grouping, 21
sql_clean, 21
sql_connect, 22
sql_read, 23
sql_write, 23

uk_patient_id, 24

valid_nhs, 26

27

	cip_spells
	csv_from_zip
	genus_gram_stain
	group_ecds_discharge_destination
	group_inpatient_admission_method
	group_inpatient_discharge_destination
	group_time
	hospital_in_out_dates
	inpatient_codes
	lab_data
	lookup_recode
	proxy_episode_dates
	respeciate_generic
	respeciate_organism
	specimen_type_grouping
	sql_clean
	sql_connect
	sql_read
	sql_write
	uk_patient_id
	valid_nhs
	Index

