Title: | An R Interface to Open-Access Malaria Data, Hosted by the 'Malaria Atlas Project' |
---|---|
Description: | A suite of tools to allow you to download all publicly available parasite rate survey points, mosquito occurrence points and raster surfaces from the 'Malaria Atlas Project' <https://malariaatlas.org/> servers as well as utility functions for plotting the downloaded data. |
Authors: | Mauricio van den Berg [aut, cre], Sarah Connor [aut], Daniel Pfeffer [aut] , Tim Lucas [aut] , Daniel May [aut] , Suzanne Keddie [aut] , Jen Rozier [aut] , Oliver Watson [aut] , Harry Gibson [aut] , Nick Golding [ctb], David Smith [ctb] |
Maintainer: | Mauricio van den Berg <[email protected]> |
License: | MIT + file LICENSE |
Version: | 1.6.1.9999 |
Built: | 2024-11-16 05:23:00 UTC |
Source: | https://github.com/malaria-atlas-project/malariaAtlas |
as.MAPraster
converts a RasterLayer or RasterStack object into a 'MAPraster' object (data.frame) for easy plotting with ggplot.
as.MAPraster(raster_object)
as.MAPraster(raster_object)
raster_object |
RasterLayer or Rasterstack object to convert into a MAPraster. |
as.MAPraster
returns a MAPraster object (data.frame) containing the below columns.
x
- x coordinates of raster pixels
y
- y coordinates of raster pixels
z
- value of raster pixels
raster_name
- name of raster for which values are stored in z
to download rasters directly from MAP.
to convert RasterLayer/RasterStack objects into a 'MAPraster' object (data.frame) for easy plotting with ggplot.
to quickly visualise MAPraster objects created using as.MAPraster
.
# Download PfPR2-10 Raster for Madagascar in 2015 and visualise this on a map. ## Not run: MDG_shp <- getShp(ISO = "MDG", admin_level = "admin0") MDG_PfPR2_10 <- getRaster(surface = "Plasmodium falciparum PR2-10", shp = MDG_shp, year = 2015) MDG_PfPR2_10 <- as.MAPraster(MDG_PfPR2_10) autoplot(MDG_PfPR2_10) ## End(Not run) #Download global raster of G6PD deficiency from Howes et al 2012 and visualise this on a map. ## Not run: G6PDd_global <- getRaster(surface = "G6PD Deficiency Allele Frequency") G6PDd_global <- as.MAPraster(G6PDd_global) autoplot(G6PDd_global) ## End(Not run)
# Download PfPR2-10 Raster for Madagascar in 2015 and visualise this on a map. ## Not run: MDG_shp <- getShp(ISO = "MDG", admin_level = "admin0") MDG_PfPR2_10 <- getRaster(surface = "Plasmodium falciparum PR2-10", shp = MDG_shp, year = 2015) MDG_PfPR2_10 <- as.MAPraster(MDG_PfPR2_10) autoplot(MDG_PfPR2_10) ## End(Not run) #Download global raster of G6PD deficiency from Howes et al 2012 and visualise this on a map. ## Not run: G6PDd_global <- getRaster(surface = "G6PD Deficiency Allele Frequency") G6PDd_global <- as.MAPraster(G6PDd_global) autoplot(G6PDd_global) ## End(Not run)
as.MAPshp
converts a SpatialPolygon or SpatialPolygonsDataframe object downloaded using getShp into a 'MAPshp object (data.frame) for easy plotting with ggplot.
as.MAPshp(object)
as.MAPshp(object)
object |
SpatialPolygon or SpatialPolygonsDataframe object to convert into a 'MAPshp'. |
as.MAPshp
returns a MAPshp object (data.frame) containing the below columns.
country_id
ISO-3 code of given administrative unit (or the ISO code of parent unit for administrative-level 1 units).
gaul_code
GAUL code of given administrative unit.
admn_level
administrative level of the given administrative unit - either 0 (national) or 1 (first-level division)
parent_id
GAUL code of parent administrative unit of a given polygon (for admin0 polygons, PARENT_ID = 0).
country_level
composite country_id
_admn_level
field.
to download rasters directly from MAP.
#Download shapefiles for Madagascar and visualise these on a map. ## Not run: MDG_shp <- getShp(ISO = "MDG", admin_level = "admin0") MDG_shp <- as.MAPshp(MDG_shp) autoplot(MDG_shp) ## End(Not run)
#Download shapefiles for Madagascar and visualise these on a map. ## Not run: MDG_shp <- getShp(ISO = "MDG", admin_level = "admin0") MDG_shp <- as.MAPshp(MDG_shp) autoplot(MDG_shp) ## End(Not run)
Will create empty columns for any missing columns expected in a pr.points data.frame. This function is particularly useful for use with packages like dplyr that strip objects of their classes.
as.pr.points(x)
as.pr.points(x)
x |
A data.frame |
#Download PfPR data for Nigeria and Cameroon and map the locations of these points using autoplot ## Not run: library(dplyr) NGA_CMR_PR <- getPR(country = c("Nigeria", "Cameroon"), species = "Pf") # Filter the data frame then readd pr.points class so that autoplot can be used. NGA_CMR_PR %>% filter(year_start > 2010) %>% as.pr.points %>% autoplot ## End(Not run)
#Download PfPR data for Nigeria and Cameroon and map the locations of these points using autoplot ## Not run: library(dplyr) NGA_CMR_PR <- getPR(country = c("Nigeria", "Cameroon"), species = "Pf") # Filter the data frame then readd pr.points class so that autoplot can be used. NGA_CMR_PR %>% filter(year_start > 2010) %>% as.pr.points %>% autoplot ## End(Not run)
Will create empty columns for any missing columns expected in a vector.points data.frame. This function is particularly useful for use with packages like dplyr that strip objects of their classes.
as.vectorpoints(x)
as.vectorpoints(x)
x |
A data.frame |
## Not run: library(dplyr) Brazil_vec <- getVecOcc(country = "Brazil") # Filter data.frame then readd vector points class so autoplot can be used. Brazil_vec %>% filter(sample_method1 == 'larval collection') %>% as.vectorpoints %>% autoplot ## End(Not run)
## Not run: library(dplyr) Brazil_vec <- getVecOcc(country = "Brazil") # Filter data.frame then readd vector points class so autoplot can be used. Brazil_vec %>% filter(sample_method1 == 'larval collection') %>% as.vectorpoints %>% autoplot ## End(Not run)
autoplot_MAPraster
is a wrapper for autoplot.MAPraster
that calls
as.MAPraster
to allow automatic map creation for RasterLayer/RasterStack
objects downloaded from MAP.
autoplot_MAPraster(object, ...)
autoplot_MAPraster(object, ...)
object |
RasterLayer/RasterStack object to be visualised. |
... |
other optional arguments to autoplot.MAPraster (e.g. shp_df, legend_title, page_title...) |
autoplot_MAPraster
returns a list of plots (gg objects) for each supplied raster.
to download rasters directly from MAP.
to convert RasterLayer/RasterStack objects into a 'MAPraster' object (data.frame) for easy plotting with ggplot.
to quickly visualise MAPraster objects created using as.MAPraster
.
## Not run: #Download PfPR2-10 Raster (Bhatt et al 2015) and raw survey points for Madagascar in # 2013 and visualise these together on a map. # Download madagascar shapefile to use for raster download. MDG_shp <- getShp(ISO = "MDG", admin_level = "admin0") # Download PfPR2-10 Raster for 2013 & plot this MDG_PfPR2_10 <- getRaster(surface = "Plasmodium falciparum PR2-10", shp = MDG_shp, year = 2013) # p <- autoplot_MAPraster(MDG_PfPR2_10) # Download raw PfPR survey points & plot these over the top of the raster pr <- getPR(country = c("Madagascar"), species = "Pf") # p[[1]] + # geom_point(data = pr[pr$year_start==2013,], # aes(longitude, latitude, fill = positive / examined, size = examined), shape = 21) + # scale_size_continuous(name = "Survey Size") + # scale_fill_distiller(name = "PfPR", palette = "RdYlBu") + # ggtitle("Raw PfPR Survey points\n + Modelled PfPR 2-10 in Madagascar in 2013") ## End(Not run) # Download global raster of G6PD deficiency (Howes et al 2012) and visualise this on a map. ## Not run: G6PDd_global <- getRaster(surface = "G6PD Deficiency Allele Frequency") #autoplot_MAPraster(G6PDd_global) ## End(Not run)
## Not run: #Download PfPR2-10 Raster (Bhatt et al 2015) and raw survey points for Madagascar in # 2013 and visualise these together on a map. # Download madagascar shapefile to use for raster download. MDG_shp <- getShp(ISO = "MDG", admin_level = "admin0") # Download PfPR2-10 Raster for 2013 & plot this MDG_PfPR2_10 <- getRaster(surface = "Plasmodium falciparum PR2-10", shp = MDG_shp, year = 2013) # p <- autoplot_MAPraster(MDG_PfPR2_10) # Download raw PfPR survey points & plot these over the top of the raster pr <- getPR(country = c("Madagascar"), species = "Pf") # p[[1]] + # geom_point(data = pr[pr$year_start==2013,], # aes(longitude, latitude, fill = positive / examined, size = examined), shape = 21) + # scale_size_continuous(name = "Survey Size") + # scale_fill_distiller(name = "PfPR", palette = "RdYlBu") + # ggtitle("Raw PfPR Survey points\n + Modelled PfPR 2-10 in Madagascar in 2013") ## End(Not run) # Download global raster of G6PD deficiency (Howes et al 2012) and visualise this on a map. ## Not run: G6PDd_global <- getRaster(surface = "G6PD Deficiency Allele Frequency") #autoplot_MAPraster(G6PDd_global) ## End(Not run)
autoplot.MAPraster
creates a map of all rasters in a MAPraster object and
displays these in a grid.
## S3 method for class 'MAPraster' autoplot( object, ..., shp_df = NULL, legend_title = "", plot_titles = TRUE, fill_scale_transform = "identity", fill_colour_palette = "RdYlBu", printed = TRUE )
## S3 method for class 'MAPraster' autoplot( object, ..., shp_df = NULL, legend_title = "", plot_titles = TRUE, fill_scale_transform = "identity", fill_colour_palette = "RdYlBu", printed = TRUE )
object |
MAPraster object to be visualised. |
... |
Other arguments passed to specific methods |
shp_df |
Shapefile(s) (data.frame) to plot with downloaded raster. |
legend_title |
String used as title for all colour scale legends. |
plot_titles |
Plot name of raster object as header for each individual raster plot? |
fill_scale_transform |
String givning a transformation for the fill aesthetic.
See the trans argument in |
fill_colour_palette |
String referring to a colorbrewer palette to be used for raster colour scale. |
printed |
Logical vector indicating whether to print maps of supplied rasters. |
autoplot.MAPraster
returns a list of plots (gg objects) for each
supplied raster.
to download rasters directly from MAP.
to convert RasterLayer/RasterStack objects into a 'MAPraster' object (data.frame) for easy plotting with ggplot.
to quickly visualise MAPraster objects created using as.MAPraster
.
## Not run: # Download PfPR2-10 Raster (Bhatt et al 2015) and raw survey points # for Madagascar in 2013 and visualise these together on a map. # Download madagascar shapefile to use for raster download. MDG_shp <- getShp(ISO = "MDG", admin_level = "admin0") # Download PfPR2-10 Raster for 2013 & plot this MDG_PfPR2_10 <- getRaster(surface = "Plasmodium falciparum PR2-10", shp = MDG_shp, year = 2013) p <- autoplot(MDG_PfPR2_10, shp_df = MDG_shp) # Download raw PfPR survey points & plot these over the top of the raster pr <- getPR(country = c("Madagascar"), species = "Pf") # Download global raster of G6PD deficiency (Howes et al 2012) and visualise this on a map. G6PDd_global <- getRaster(surface = "G6PD Deficiency Allele Frequency") autoplot(G6PDd_global) ## End(Not run)
## Not run: # Download PfPR2-10 Raster (Bhatt et al 2015) and raw survey points # for Madagascar in 2013 and visualise these together on a map. # Download madagascar shapefile to use for raster download. MDG_shp <- getShp(ISO = "MDG", admin_level = "admin0") # Download PfPR2-10 Raster for 2013 & plot this MDG_PfPR2_10 <- getRaster(surface = "Plasmodium falciparum PR2-10", shp = MDG_shp, year = 2013) p <- autoplot(MDG_PfPR2_10, shp_df = MDG_shp) # Download raw PfPR survey points & plot these over the top of the raster pr <- getPR(country = c("Madagascar"), species = "Pf") # Download global raster of G6PD deficiency (Howes et al 2012) and visualise this on a map. G6PDd_global <- getRaster(surface = "G6PD Deficiency Allele Frequency") autoplot(G6PDd_global) ## End(Not run)
autoplot.MAPshp
creates a map of shapefiles downloaded using getShp.
## S3 method for class 'MAPshp' autoplot(object, ..., map_title = NULL, facet = FALSE, printed = TRUE)
## S3 method for class 'MAPshp' autoplot(object, ..., map_title = NULL, facet = FALSE, printed = TRUE)
object |
A MAPshp object downloaded using |
... |
Other arguments passed to specific methods |
map_title |
Custom title used for the plot. |
facet |
If TRUE, splits map into a separate facet for each administrative level. |
printed |
Should the plot print to graphics device. |
autoplot.MAPshp
returns a map (gg object) of the supplied MAPShp dataframe.
## Not run: MDG_shp <- getShp(ISO = "MDG", admin_level = "admin0") autoplot(as.MAPshp(MDG_shp)) ## End(Not run)
## Not run: MDG_shp <- getShp(ISO = "MDG", admin_level = "admin0") autoplot(as.MAPshp(MDG_shp)) ## End(Not run)
autoplot.pr.points
creates a map of PR points downloaded from MAP.
## S3 method for class 'pr.points' autoplot( object, ..., shp_df = NULL, admin_level = "admin0", map_title = "PR Survey Locations", fill_legend_title = "Raw PR", fill_scale_transform = "identity", facet = NULL, hide_confidential = FALSE, printed = TRUE )
## S3 method for class 'pr.points' autoplot( object, ..., shp_df = NULL, admin_level = "admin0", map_title = "PR Survey Locations", fill_legend_title = "Raw PR", fill_scale_transform = "identity", facet = NULL, hide_confidential = FALSE, printed = TRUE )
object |
a pr.points object downloaded using |
... |
Other arguments passed to specific methods |
shp_df |
Shapefile(s) (data.frame) to plot with downloaded points. (If not specified automatically uses getShp() for all countries included in pr.points object). |
admin_level |
the administrative level used for plotting administrative boundaries; either |
map_title |
custom title used for the plot |
fill_legend_title |
Add a title to the legend. |
fill_scale_transform |
String givning a transformation for the fill aesthetic.
See the trans argument in |
facet |
if TRUE, splits map into a separate facet for each malaria species; by default FALSE if only one species is present in object, TRUE if both P. falciparum and P. vivax data are present in object. |
hide_confidential |
if TRUE, removes confidential points from the map |
printed |
Should the plot be printed to the graphics device. |
autoplot.pr.points
returns a plots (gg object) for the supplied pr.points dataframe.
## Not run: PfPR_surveys_NGA <- getPR(country = c("Nigeria"), species = "Pf") autoplot(PfPR_surveys_NGA) # Download PfPR2-10 Raster (Bhatt et al. 2015) and raw survey points for Madagascar in # 2013 and visualise these together on a map. # Download madagascar shapefile to use for raster download. MDG_shp <- getShp(ISO = "MDG", admin_level = "admin0") # Download PfPR2-10 Raster for 2013 & plot this MDG_PfPR2_10 <- getRaster(surface = "Plasmodium falciparum PR2-10", shp = MDG_shp, year = 2013) p <- autoplot(MDG_PfPR2_10) # Download raw PfPR survey points & plot these over the top of the raster pr <- getPR(country = c("Madagascar"), species = "Pf") # p[[1]] + # geom_point(data = pr[pr$year_start==2013,], # aes(longitude, latitude, fill = positive / examined, # size = examined), shape = 21) + # scale_size_continuous(name = "Survey Size") + # scale_fill_distiller(name = "PfPR", palette = "RdYlBu") + # ggtitle("Raw PfPR Survey points\n + Modelled PfPR 2-10 in Madagascar in 2013") ## End(Not run)
## Not run: PfPR_surveys_NGA <- getPR(country = c("Nigeria"), species = "Pf") autoplot(PfPR_surveys_NGA) # Download PfPR2-10 Raster (Bhatt et al. 2015) and raw survey points for Madagascar in # 2013 and visualise these together on a map. # Download madagascar shapefile to use for raster download. MDG_shp <- getShp(ISO = "MDG", admin_level = "admin0") # Download PfPR2-10 Raster for 2013 & plot this MDG_PfPR2_10 <- getRaster(surface = "Plasmodium falciparum PR2-10", shp = MDG_shp, year = 2013) p <- autoplot(MDG_PfPR2_10) # Download raw PfPR survey points & plot these over the top of the raster pr <- getPR(country = c("Madagascar"), species = "Pf") # p[[1]] + # geom_point(data = pr[pr$year_start==2013,], # aes(longitude, latitude, fill = positive / examined, # size = examined), shape = 21) + # scale_size_continuous(name = "Survey Size") + # scale_fill_distiller(name = "PfPR", palette = "RdYlBu") + # ggtitle("Raw PfPR Survey points\n + Modelled PfPR 2-10 in Madagascar in 2013") ## End(Not run)
autoplot.sf
creates a map of shapefiles downloaded using getShp.
## S3 method for class 'sf' autoplot(object, ..., map_title = NULL, facet = FALSE, printed = TRUE)
## S3 method for class 'sf' autoplot(object, ..., map_title = NULL, facet = FALSE, printed = TRUE)
object |
A sf object downloaded using |
... |
Other arguments passed to specific methods |
map_title |
Custom title used for the plot. |
facet |
If TRUE, splits map into a separate facet for each administrative level. |
printed |
Should the plot print to graphics device. |
autoplot.sf
returns a map of the supplied sf object
## Not run: MDG_shp <- getShp(ISO = "MDG", admin_level = "admin0") autoplot(MDG_shp) ## End(Not run)
## Not run: MDG_shp <- getShp(ISO = "MDG", admin_level = "admin0") autoplot(MDG_shp) ## End(Not run)
autoplot.SpatRaster
creates a map of all rasters in a SpatRaster object and
displays these in a grid.
## S3 method for class 'SpatRaster' autoplot( object, ..., shp_df = NULL, legend_title = "", plot_titles = TRUE, fill_scale_transform = "identity", fill_colour_palette = "RdYlBu", printed = TRUE )
## S3 method for class 'SpatRaster' autoplot( object, ..., shp_df = NULL, legend_title = "", plot_titles = TRUE, fill_scale_transform = "identity", fill_colour_palette = "RdYlBu", printed = TRUE )
object |
SpatRaster object to be visualised. |
... |
Other arguments passed to specific methods |
shp_df |
Shapefile(s) (data.frame) to plot with downloaded raster. |
legend_title |
String used as title for all colour scale legends. |
plot_titles |
Plot name of raster object as header for each individual raster plot? |
fill_scale_transform |
String givning a transformation for the fill aesthetic.
See the trans argument in |
fill_colour_palette |
String referring to a colorbrewer palette to be used for raster colour scale. |
printed |
Logical vector indicating whether to print maps of supplied rasters. |
autoplot.SpatRaster
returns a list of plots (gg objects) for each
supplied raster.
to download rasters directly from MAP.
## Not run: # Download PfPR2-10 Raster (Bhatt et al 2015) and raw survey points # for Madagascar in 2013 and visualise these together on a map. # Download madagascar shapefile to use for raster download. MDG_shp <- getShp(ISO = "MDG", admin_level = "admin0") # Download PfPR2-10 Raster for 2013 & plot this MDG_PfPR2_10 <- getRaster(surface = "Plasmodium falciparum PR2-10", shp = MDG_shp, year = 2013) p <- autoplot(MDG_PfPR2_10, shp_df = MDG_shp) # Download raw PfPR survey points & plot these over the top of the raster pr <- getPR(country = c("Madagascar"), species = "Pf") # p[[1]] + geom_point(data = pr[pr$year_start==2013,], # aes(longitude, latitude, fill = positive / examined, # size = examined), shape = 21) + # scale_size_continuous(name = "Survey Size") + # scale_fill_distiller(name = "PfPR", palette = "RdYlBu") + # ggtitle("Raw PfPR Survey points\n + # Modelled PfPR 2-10 in Madagascar in 2013") # Download global raster of G6PD deficiency (Howes et al 2012) and visualise this on a map. G6PDd_global <- getRaster(surface = "G6PD Deficiency Allele Frequency") autoplot(G6PDd_global) ## End(Not run)
## Not run: # Download PfPR2-10 Raster (Bhatt et al 2015) and raw survey points # for Madagascar in 2013 and visualise these together on a map. # Download madagascar shapefile to use for raster download. MDG_shp <- getShp(ISO = "MDG", admin_level = "admin0") # Download PfPR2-10 Raster for 2013 & plot this MDG_PfPR2_10 <- getRaster(surface = "Plasmodium falciparum PR2-10", shp = MDG_shp, year = 2013) p <- autoplot(MDG_PfPR2_10, shp_df = MDG_shp) # Download raw PfPR survey points & plot these over the top of the raster pr <- getPR(country = c("Madagascar"), species = "Pf") # p[[1]] + geom_point(data = pr[pr$year_start==2013,], # aes(longitude, latitude, fill = positive / examined, # size = examined), shape = 21) + # scale_size_continuous(name = "Survey Size") + # scale_fill_distiller(name = "PfPR", palette = "RdYlBu") + # ggtitle("Raw PfPR Survey points\n + # Modelled PfPR 2-10 in Madagascar in 2013") # Download global raster of G6PD deficiency (Howes et al 2012) and visualise this on a map. G6PDd_global <- getRaster(surface = "G6PD Deficiency Allele Frequency") autoplot(G6PDd_global) ## End(Not run)
autoplot.SpatRasterCollection
creates a map of all rasters in a autoplot.SpatRasterCollection object and
displays these in a grid.
## S3 method for class 'SpatRasterCollection' autoplot( object, ..., shp_df = NULL, legend_title = "", plot_titles = TRUE, fill_scale_transform = "identity", fill_colour_palette = "RdYlBu", printed = TRUE )
## S3 method for class 'SpatRasterCollection' autoplot( object, ..., shp_df = NULL, legend_title = "", plot_titles = TRUE, fill_scale_transform = "identity", fill_colour_palette = "RdYlBu", printed = TRUE )
object |
SpatRasterCollection object to be visualised. |
... |
Other arguments passed to specific methods |
shp_df |
Shapefile(s) (data.frame) to plot with downloaded raster. |
legend_title |
String used as title for all colour scale legends. |
plot_titles |
Plot name of raster object as header for each individual raster plot? |
fill_scale_transform |
String givning a transformation for the fill aesthetic.
See the trans argument in |
fill_colour_palette |
String referring to a colorbrewer palette to be used for raster colour scale. |
printed |
Logical vector indicating whether to print maps of supplied rasters. |
autoplot.SpatRasterCollection
returns a list of plots (gg objects) for each
supplied raster.
gg object
autoplot.vector.points
creates a map of Vector points downloaded from MAP.
## S3 method for class 'vector.points' autoplot( object, ..., shp_df = NULL, admin_level = "admin0", map_title = "Vector Survey Locations", fill_legend_title = "Raw Vetor Occurrences", fill_scale_transform = "identity", facet = NULL, printed = TRUE )
## S3 method for class 'vector.points' autoplot( object, ..., shp_df = NULL, admin_level = "admin0", map_title = "Vector Survey Locations", fill_legend_title = "Raw Vetor Occurrences", fill_scale_transform = "identity", facet = NULL, printed = TRUE )
object |
a vector.points object downloaded using |
... |
Other arguments passed to specific methods |
shp_df |
Shapefile(s) (data.frame) to plot with downloaded points. (If not specified automatically uses getShp() for all countries included in vector.points object). |
admin_level |
the administrative level used for plotting administrative boundaries; either |
map_title |
custom title used for the plot |
fill_legend_title |
Add a title to the legend. |
fill_scale_transform |
String givning a transformation for the fill aesthetic.
See the trans argument in |
facet |
if TRUE, splits map into a separate facet for each malaria species; by default FALSE. |
printed |
Should the plot be printed to the graphics device. |
autoplot.vector.points
returns a plots (gg object) for the supplied vector.points dataframe.
## Not run: Vector_surveys_NGA_NG <- getVecOcc(country = c("Nigeria", "Niger")) autoplot(Vector_surveys_NGA_NG) # Download the predicted distribution of An. dirus species complex Raster and # vector points for Myanmar and visualise these together on a map. # Download Myanmar shapefile to use for raster download. MMR_shp <- getShp(ISO = "MMR", admin_level = "admin0") # Download An. dirus predicted distribution Raster & plot this MMR_An_dirus <- getRaster(surface = "Anopheles dirus species complex", shp = MMR_shp) p <- autoplot(MMR_An_dirus, shp_df = MMR_shp, printed = FALSE) # Download raw occurrence points & plot these over the top of the raster species <- getVecOcc(country = "Myanmar", species = "Anopheles dirus") # p[[1]] + # geom_point(data = species, # aes(longitude, # latitude, # colour = species))+ # scale_colour_manual(values = "black", name = "Vector suvery locations")+ # scale_fill_distiller(name = "Predicted distribution of An. dirus complex", # palette = "PuBuGn", # direction = 1)+ # ggtitle("Vector Survey points\n + The predicted distribution of An. dirus complex") ## End(Not run)
## Not run: Vector_surveys_NGA_NG <- getVecOcc(country = c("Nigeria", "Niger")) autoplot(Vector_surveys_NGA_NG) # Download the predicted distribution of An. dirus species complex Raster and # vector points for Myanmar and visualise these together on a map. # Download Myanmar shapefile to use for raster download. MMR_shp <- getShp(ISO = "MMR", admin_level = "admin0") # Download An. dirus predicted distribution Raster & plot this MMR_An_dirus <- getRaster(surface = "Anopheles dirus species complex", shp = MMR_shp) p <- autoplot(MMR_An_dirus, shp_df = MMR_shp, printed = FALSE) # Download raw occurrence points & plot these over the top of the raster species <- getVecOcc(country = "Myanmar", species = "Anopheles dirus") # p[[1]] + # geom_point(data = species, # aes(longitude, # latitude, # colour = species))+ # scale_colour_manual(values = "black", name = "Vector suvery locations")+ # scale_fill_distiller(name = "Predicted distribution of An. dirus complex", # palette = "PuBuGn", # direction = 1)+ # ggtitle("Vector Survey points\n + The predicted distribution of An. dirus complex") ## End(Not run)
convert prevalences from one age range to another
convertPrevalence( prevalence, age_min_in, age_max_in, age_min_out = rep(2, length(prevalence)), age_max_out = rep(9, length(prevalence)), parameters = "Pf_Smith2007", sample_weights = NULL )
convertPrevalence( prevalence, age_min_in, age_max_in, age_min_out = rep(2, length(prevalence)), age_max_out = rep(9, length(prevalence)), parameters = "Pf_Smith2007", sample_weights = NULL )
prevalence |
Vector of prevalence values |
age_min_in |
Vector of minimum ages sampled |
age_max_in |
Vector maximum ages sampled. |
age_min_out |
Length 1 numeric or vector of same length as prevalence given the required age range upper bound |
age_max_out |
Length 1 numeric or vector of same length as prevalence given the required age range lower bound |
parameters |
Specifies the set of parameters to use in the model. This can either be "Pf_Smith2007" to use the parameters for *Plasmodium falciparum* defined in that paper, "Pv_Gething2012" for the *P. vivax* parameters used in that paper, or a user-specified vector givng the values of parameters 'b', 's', 'c' and 'alpha', in that order. If specified, |
sample_weights |
Must be a vector of length 85 giving the sample weights for each age category (the proportion of the population in that age category) . If 'NULL', The sample weights used in Smith et al. 2007 are used. |
Smith, D. L. et al. Standardizing estimates of the Plasmodium falciparum parasite rate. Malaria Journal 6, 131 (2007).
Gething, Peter W., et al. "A long neglected world malaria map: Plasmodium vivax endemicity in 2010." PLoS neglected tropical diseases 6.9 (2012): e1814.
Code written by Nick Golding and Dave Smith
# Convert from prevalence 2 to 5 to prevalence 2 to 10 pr2_10 <- convertPrevalence(0.1, 2, 5, 2, 10) # Convert many surveys all to 2 to 10. pr <- runif(20, 0.1, 0.15) min_in <- sample(1:5, 20, replace = TRUE) max_in <- rep(8, 20) min_out <- rep(2, 20) max_out <- rep(10, 20) pr_standardised <- convertPrevalence(pr, min_in, max_in, min_out, max_out) plot(pr_standardised, pr)
# Convert from prevalence 2 to 5 to prevalence 2 to 10 pr2_10 <- convertPrevalence(0.1, 2, 5, 2, 10) # Convert many surveys all to 2 to 10. pr <- runif(20, 0.1, 0.15) min_in <- sample(1:5, 20, replace = TRUE) max_in <- rep(8, 20) min_out <- rep(2, 20) max_out <- rep(10, 20) pr_standardised <- convertPrevalence(pr, min_in, max_in, min_out, max_out) plot(pr_standardised, pr)
Download rasters from the MAP geoserver to a specifed location. If file already exists it will read it instead.
download_rst(dataset_id, extent, year, file_name, file_path)
download_rst(dataset_id, extent, year, file_name, file_path)
dataset_id |
ID for dataset on MAP geoserver |
extent |
desired raster extent |
year |
desired year to download |
file_name |
file name (excluding extension) to save raster to |
file_path |
path to save raster to |
SpatRaster
extractRaster
extracts pixel values from MAP rasters at user-specified point locations (without downloading the entire raster).
extractRaster( df, csv_path = NULL, surface = NULL, year = NULL, dataset_id = NULL )
extractRaster( df, csv_path = NULL, surface = NULL, year = NULL, dataset_id = NULL )
df |
data.frame containing coordinates of input point locations, must contain columns named 'latitude'/'lat'/'x' AND 'longitude'/'long'/'y') |
csv_path |
(optional) user-specified path to which extractRaster coordinates and results are stored. |
surface |
deprecated argument. Please remove it from your code. |
year |
for time-varying rasters: if downloading a single surface for one or more years, |
dataset_id |
A character string specifying the dataset ID(s) of one or more rasters. These dataset ids can be found in the data.frame returned by listRaster, in the dataset_id column e.g. c('Malaria__202206_Global_Pf_Mortality_Count', 'Malaria__202206_Global_Pf_Parasite_Rate') |
extractRaster
returns the input dataframe (df
), with the following columns appended, providing values for each raster, location and year.
layerName
dataset id corresponding to extracted raster values for a given row, check listRaster
for raster metadata.
year
the year for which raster values were extracted (time-varying rasters only; static rasters do not have this column).
value
the raster value for the pixel in which a given point location falls.
autoplot
method for quick mapping of PR point locations (autoplot.pr.points
).
#Download PfPR data for Nigeria and Cameroon and map the locations of these points using autoplot ## Not run: # Get some data and remove rows with NAs in location or examined or positive columns. NGA_CMR_PR <- getPR(country = c("Nigeria", "Cameroon"), species = "Pf") complete <- complete.cases(NGA_CMR_PR[, c(4, 5, 16, 17)]) NGA_CMR_PR <- NGA_CMR_PR[complete, ] # Extract PfPR data at those locations. data <- extractRaster(df = NGA_CMR_PR[, c('latitude', 'longitude')], dataset_id = 'Malaria__202206_Global_Pf_Parasite_Rate', year=2020) # Some rasters are stored with NA encoded as -9999 data$value[data$value == -9999] <- NA # We can quickly plot a summary plot((NGA_CMR_PR$positive / NGA_CMR_PR$examined) ~ data$value) ## End(Not run)
#Download PfPR data for Nigeria and Cameroon and map the locations of these points using autoplot ## Not run: # Get some data and remove rows with NAs in location or examined or positive columns. NGA_CMR_PR <- getPR(country = c("Nigeria", "Cameroon"), species = "Pf") complete <- complete.cases(NGA_CMR_PR[, c(4, 5, 16, 17)]) NGA_CMR_PR <- NGA_CMR_PR[complete, ] # Extract PfPR data at those locations. data <- extractRaster(df = NGA_CMR_PR[, c('latitude', 'longitude')], dataset_id = 'Malaria__202206_Global_Pf_Parasite_Rate', year=2020) # Some rasters are stored with NA encoded as -9999 data$value[data$value == -9999] <- NA # We can quickly plot a summary plot((NGA_CMR_PR$positive / NGA_CMR_PR$examined) ~ data$value) ## End(Not run)
We cannot directly share DHS data. We can share coordinates, but not the data values. This function attempts to fill the data gaps directly from the DHS server using the package rdhs. To use the function you will need to setup an account on the DHS website and request any datasets you wish to use (including requesting the GPS data). Confirmation can take a few days. Once this has been verified, you should be able to use this function.
fillDHSCoordinates( data, email = NULL, project = NULL, cache_path = NULL, config_path = NULL, global = TRUE, verbose_download = FALSE, verbose_setup = TRUE, data_frame = NULL, timeout = 30, password_prompt = FALSE, prompt = TRUE )
fillDHSCoordinates( data, email = NULL, project = NULL, cache_path = NULL, config_path = NULL, global = TRUE, verbose_download = FALSE, verbose_setup = TRUE, data_frame = NULL, timeout = 30, password_prompt = FALSE, prompt = TRUE )
data |
Data to add DHS coordinates to |
email |
Character for email used to login to the DHS website. |
project |
Character for the name of the DHS project from which datasets should be downloaded. |
cache_path |
Character for directory path where datasets and API calls will be cached. If left bank, a suitable directory will be created within your user cache directory for your operating system (permission granting). |
config_path |
Character for where the config file should be saved. For a global configuration, ‘config_path' must be ’~/.rdhs.json'. For a local configuration, ‘config_path' must be ’rdhs.json'. If left bank, the config file will be stored within your user cache directory for your operating system (permission granting). |
global |
Logical for the config_path to be interpreted as a global config path or a local one. Default = TRUE. |
verbose_download |
Logical for dataset download progress bars to be shown. Default = FALSE. |
verbose_setup |
Logical for rdhs setup and messages to be printed. Default = TRUE. |
data_frame |
Function with which to convert API calls into. If left
blank |
timeout |
Numeric for how long in seconds to wait for the DHS API to respond. Default = 30. |
password_prompt |
Logical whether user is asked to type their password,
even if they have previously set it. Default = FALSE. Set to TRUE if you
have mistyped your password when using |
prompt |
Logical for whether the user should be prompted for permission to write to files. This should not need be |
This function requires the package rdhs
which is currently
only suggested by the package (not a dependency). So you will
need to install it.
Note that the project
has to be the exact name in your
DHS project.
OJ Watson
## Not run: pf <- malariaAtlas::getPR("all",species = "pf") pf <- fillDHSCoordinates(pf, email = "[email protected]", project = "pretend project name") ## End(Not run)
## Not run: pf <- malariaAtlas::getPR("all",species = "pf") pf <- fillDHSCoordinates(pf, email = "[email protected]", project = "pretend project name") ## End(Not run)
getPR
downloads all publicly available PR points for a specified country (or countries) and returns this as a dataframe.
getPR( country = NULL, ISO = NULL, continent = NULL, species = NULL, extent = NULL, start_date = NULL, end_date = NULL, version = NULL )
getPR( country = NULL, ISO = NULL, continent = NULL, species = NULL, extent = NULL, start_date = NULL, end_date = NULL, version = NULL )
country |
string containing name of desired country, e.g. |
ISO |
string containing ISO3 code for desired country, e.g. |
continent |
string containing continent (one of "Africa", "Americas", "Asia", "Oceania") for desired data, e.g. |
species |
string specifying the Plasmodium species for which to find PR points, options include: |
extent |
an object specifying spatial extent within which PR data is desired, as returned by sf::st_bbox() - the first column has the minimum, the second the maximum values; rows 1 & 2 represent the x & y dimensions respectively (matrix(c("xmin", "ymin","xmax", "ymax"), nrow = 2, ncol = 2, dimnames = list(c("x", "y"), c("min", "max")))) |
start_date |
string object representing the lower date to filter the PR data by (inclusive) e.g. '2020-01-01' |
end_date |
string object representing the upper date to filter the PR data by (exclusive) e.g. '2020-01-01' |
version |
(optional) The PR dataset version to return. If not provided, will just use the most recent version of PR data. (To see available version options, use listPRPointVersions) |
country
and ISO
refer to countries and a lower-level administrative regions such as Mayotte and French Guiana.
While we cannot direectly distribute DHS coordinates, we can distribute the number of examined and positive. If the coordinates
are needed they can be downloaded from www.measuredhs.com, via the rdhs package or using malariaAtlas:fillDHSCoordinates().
getPR
returns a dataframe containing the below columns, in which each row represents a distinct data point/ study site.
dhs_id
The dhs survey id if appropriate.
site_id
Unique site identifier
site_name
Name of site.
autoplot
method for quick mapping of PR point locations (autoplot.pr.points
).
#Download PfPR data for Nigeria and Cameroon and map the locations of these points using autoplot ## Not run: NGA_CMR_PR <- getPR(country = c("Nigeria", "Cameroon"), species = "Pf") autoplot(NGA_CMR_PR) #Download PfPR data for Madagascar and map the locations of these points using autoplot Madagascar_pr <- getPR(ISO = "MDG", species = "Pv") autoplot(Madagascar_pr) getPR(country = "ALL", species = "BOTH") ## End(Not run)
#Download PfPR data for Nigeria and Cameroon and map the locations of these points using autoplot ## Not run: NGA_CMR_PR <- getPR(country = c("Nigeria", "Cameroon"), species = "Pf") autoplot(NGA_CMR_PR) #Download PfPR data for Madagascar and map the locations of these points using autoplot Madagascar_pr <- getPR(ISO = "MDG", species = "Pv") autoplot(Madagascar_pr) getPR(country = "ALL", species = "BOTH") ## End(Not run)
getRaster
downloads publicly available MAP rasters for a specific surface & year, clipped to a provided bounding box or shapefile.
getRaster( dataset_id = NULL, surface = NULL, shp = NULL, extent = NULL, file_path = NULL, year = NULL, vector_year = NULL )
getRaster( dataset_id = NULL, surface = NULL, shp = NULL, extent = NULL, file_path = NULL, year = NULL, vector_year = NULL )
dataset_id |
A character string specifying the dataset ID(s) of one or more rasters. These dataset ids can be found in the data.frame returned by listRaster, in the dataset_id column e.g. c('Malaria__202206_Global_Pf_Mortality_Count', 'Malaria__202206_Global_Pf_Parasite_Rate') |
surface |
deprecated argument. Please remove it from your code. |
shp |
SpatialPolygon(s) object of a shapefile to use when clipping downloaded rasters. (use either |
extent |
2x2 matrix specifying the spatial extent within which raster data is desired, as returned by sf::st_bbox() - the first column has the minimum, the second the maximum values; rows 1 & 2 represent the x & y dimensions respectively (matrix(c("xmin", "ymin","xmax", "ymax"), nrow = 2, ncol = 2, dimnames = list(c("x", "y"), c("min", "max")))) (use either |
file_path |
string specifying the directory to which raster files will be downloaded, if you want to download them. If none given, rasters will not be saved to files. |
year |
default = |
vector_year |
deprecated argument. Please remove it from your code. |
getRaster
returns a SpatRaster for the specified extent. Or a SpatRasterCollection if the two rasters are incompatible in terms of projection/extent/resolution
to quickly visualise rasters downloded using getRaster
.
to convert RasterLayer/RasterStack objects into a 'MAPraster' object (data.frame) for easy plotting with ggplot.
to quickly visualise MAPraster objects created using as.MAPraster
.
# Download PfPR2-10 Raster for Madagascar and visualise this immediately. ## Not run: MDG_shp <- getShp(ISO = "MDG", admin_level = "admin0") MDG_PfPR2_10 <- getRaster(dataset_id = "Malaria__202206_Global_Pf_Parasite_Rate", shp = MDG_shp) autoplot(MDG_PfPR2_10) ## End(Not run)
# Download PfPR2-10 Raster for Madagascar and visualise this immediately. ## Not run: MDG_shp <- getShp(ISO = "MDG", admin_level = "admin0") MDG_PfPR2_10 <- getRaster(dataset_id = "Malaria__202206_Global_Pf_Parasite_Rate", shp = MDG_shp) autoplot(MDG_PfPR2_10) ## End(Not run)
getShp
downloads a shapefile for a specified country (or countries) and returns this as either a spatialPolygon or data.frame object.
getShp( country = NULL, ISO = NULL, extent = NULL, admin_level = c("admin0"), format = NULL, long = NULL, lat = NULL, version = NULL )
getShp( country = NULL, ISO = NULL, extent = NULL, admin_level = c("admin0"), format = NULL, long = NULL, lat = NULL, version = NULL )
country |
string containing name of desired country, e.g. |
ISO |
string containing ISO3 code for desired country, e.g. |
extent |
2x2 matrix specifying the spatial extent within which polygons are desired, as returned by sp::bbox() - the first column has the minimum, the second the maximum values; rows 1 & 2 represent the x & y dimensions respectively (matrix(c("xmin", "ymin","xmax", "ymax"), nrow = 2, ncol = 2, dimnames = list(c("x", "y"), c("min", "max")))). |
admin_level |
string specifying the administrative level for which shapefile are desired (only "admin0","admin1","admin2","admin3", or "all" accepted). N.B. Not all administrative levels are available for all countries. Use listShp to check which shapefiles are available. If an administrative level is requested that is not available, the closest available administrative level shapefiles will be returned. |
format |
deprecated argument. Please remove it from your code. |
long |
longitude of a point location falling within the desired shapefile. |
lat |
latitude of a point location falling within the desired shapefile. |
version |
The admin unit dataset version to return. Is NULL by default, and if left NULL will just use the most recent version of admin unit data. |
getShp
returns a sf object for requested administrative unit polygons. The following attribute fields are included:
iso
ISO-3 code of given administrative unit (or the ISO code of parent unit for administrative-level 1 units).
admn_level
administrative level of the given administrative unit - either 0 (national), 1 (first-level division), 2 (second-level division), 3 (third-level division).
name_0
name of admin0 parent of a given administrative unit (or just shapefile name for admin0 units)
id_0
id code of admin0 parent of the current shapefile (or just shapefile id for admin0 units)
type_0
if applicable, type of administrative unit or admin0 parent
name_1
name of admin1 parent of a given administrative unit (or just shapefile name for admin1 units); NA for admin0 units
id_1
id code of admin1 parent of the current shapefile (or just shapefile id for admin1 units); NA for admin0 units
type_1
if applicable, type of administrative unit or admin1 parent
name_2
name of admin2 parent of a given administrative unit (or just shapefile name for admin2 units); NA for admin0, admin1 units
id_2
id code of admin2 parent of the current shapefile (or just shapefile id for admin2 units); NA for admin0, admin1 units
type_2
if applicable, type of administrative unit or admin2 parent
name_3
name of admin3 parent of a given administrative unit (or just shapefile name for admin3 units); NA for admin0, admin1, admin2 units
id_3
id code of admin3 parent of the current shapefile (or just shapefile id for admin3 units); NA for admin0, admin1, admin2 units
type_3
if applicable, type of administrative unit
source
source of administrative boundaries
geometry
geometry of administrative boundaries
country_level
composite iso
_admn_level
field.
autoplot
method for quick mapping of PR point locations (autoplot.pr.points
).
#Download PfPR data & associated shapefiles for Nigeria and Cameroon ## Not run: NGA_CMR_PR <- getPR(country = c("Nigeria", "Cameroon"), species = "Pf") NGA_CMR_shp <- getShp(country = c("Nigeria", "Cameroon")) #Download PfPR data & associated shapefiles for Chad Chad_PR <- getPR(ISO = "TCD", species = "both") Chad_shp <- getShp(ISO = "TCD") #' #Download PfPR data & associated shapefiles defined by extent for Madagascar MDG_PR <- getPR(country = "Madagascar", species = "Pv") ## End(Not run)
#Download PfPR data & associated shapefiles for Nigeria and Cameroon ## Not run: NGA_CMR_PR <- getPR(country = c("Nigeria", "Cameroon"), species = "Pf") NGA_CMR_shp <- getShp(country = c("Nigeria", "Cameroon")) #Download PfPR data & associated shapefiles for Chad Chad_PR <- getPR(ISO = "TCD", species = "both") Chad_shp <- getShp(ISO = "TCD") #' #Download PfPR data & associated shapefiles defined by extent for Madagascar MDG_PR <- getPR(country = "Madagascar", species = "Pv") ## End(Not run)
Return sp style bbox
getSpBbox(sfBboxOrShp)
getSpBbox(sfBboxOrShp)
sfBboxOrShp |
sf shapefile or result of sf::st_bbox(sf_shp) |
bbox in sp style. A 2x2 matrix - the first column has the minimum, the second the maximum values; rows 1 & 2 represent the x & y dimensions respectively (matrix(c("xmin", "ymin","xmax", "ymax"), nrow = 2, ncol = 2, dimnames = list(c("x", "y"), c("min", "max"))))
getVecOcc
downloads all publicly available vector occurrence points for a specified country (or countries) and returns this as a dataframe.
country
and ISO
refer to countries and a lower-level administrative regions such as French Guiana.Download Vector Occurrence points from the MAP database
getVecOcc
downloads all publicly available vector occurrence points for a specified country (or countries) and returns this as a dataframe.
country
and ISO
refer to countries and a lower-level administrative regions such as French Guiana.
getVecOcc( country = NULL, ISO = NULL, continent = NULL, species = "all", extent = NULL, start_date = NULL, end_date = NULL, version = NULL )
getVecOcc( country = NULL, ISO = NULL, continent = NULL, species = "all", extent = NULL, start_date = NULL, end_date = NULL, version = NULL )
country |
string containing name of desired country, e.g. |
ISO |
string containing ISO3 code for desired country, e.g. |
continent |
string containing continent (one of "Africa", "Americas", "Asia", "Oceania") for desired data, e.g. |
species |
string specifying the Anopheles species for which to find vector occurrence points, options include: |
extent |
an object specifying spatial extent within which PR data is desired, as returned by sf::st_bbox(). - the first column has the minimum, the second the maximum values; rows 1 & 2 represent the x & y dimensions respectively (matrix(c("xmin", "ymin","xmax", "ymax"), nrow = 2, ncol = 2, dimnames = list(c("x", "y"), c("min", "max")))) |
start_date |
string object representing the lower date to filter the vector occurrence data by (inclusive) |
end_date |
string object representing the upper date to filter the vector occurrence data by (exclusive) |
version |
(optional) The vector points dataset version to use. If not provided, will just use the most recent version of vector points data. (To see available version options, use listVecOccPointVersions) |
getVecOcc
returns a dataframe containing the below columns, in which each row represents a distinct data point/ study site.
COLUMNNAME
description of contents
COLUMNNAME
description of contents
COLUMNNAME
description of contents
autoplot
method for quick mapping of Vector occurrence point locations (autoplot.vector.points
).
# Download vector occurrence data for Brazil and map the locations using autoplot.vector.points ## Not run: Brazil_vec <- getVecOcc(country = "Brazil") autoplot(Brazil_vec) # Download vector data for Madagascar and map the locations using autoplot Madagascar_vec <- getVecOcc(ISO = "MDG", species = "All") autoplot(Madagascar_vec) # Subset by extent. extent_vec <- getVecOcc(extent = matrix(c(100,13,110,18), nrow = 2), species = 'all') ## End(Not run)
# Download vector occurrence data for Brazil and map the locations using autoplot.vector.points ## Not run: Brazil_vec <- getVecOcc(country = "Brazil") autoplot(Brazil_vec) # Download vector data for Madagascar and map the locations using autoplot Madagascar_vec <- getVecOcc(ISO = "MDG", species = "All") autoplot(Madagascar_vec) # Subset by extent. extent_vec <- getVecOcc(extent = matrix(c(100,13,110,18), nrow = 2), species = 'all') ## End(Not run)
isAvaiable
is a wrapper for isAvailable_pr and isAvailable_vec, listing data (PR survey point location data and vector occurrence locations available to download from the MAP geoserver.
isAvailable( sourcedata = NULL, full_results = FALSE, country = NULL, ISO = NULL, continent = NULL, ... )
isAvailable( sourcedata = NULL, full_results = FALSE, country = NULL, ISO = NULL, continent = NULL, ... )
sourcedata |
One of 'pr points' or 'vector points' |
full_results |
Should the list be printed to the console? |
country |
string containing name of desired country, e.g. |
ISO |
string containing ISO3 code for desired country, e.g. |
continent |
string containing continent for desired data, e.g. |
... |
passed on to isAvailable_vec and isAvailable_pr |
isAvailable
returns a data.frame detailing the administrative units for which shapefiles are stored on the MAP geoserver.
link{isAvailable_pr}
isAvailable_vec
## Not run: available_pr_locations <- isAvailable_pr(ISO = 'IDN') available_vector_locations <- isAvailable_vec(ISO = 'IDN') ## End(Not run)
## Not run: available_pr_locations <- isAvailable_pr(ISO = 'IDN') available_vector_locations <- isAvailable_vec(ISO = 'IDN') ## End(Not run)
isAvailable_pr
checks whether the MAP database contains PR points for the specified country/location.
isAvailable_pr( sourcedata = NULL, country = NULL, ISO = NULL, continent = NULL, full_results = FALSE, version = NULL )
isAvailable_pr( sourcedata = NULL, country = NULL, ISO = NULL, continent = NULL, full_results = FALSE, version = NULL )
sourcedata |
deprecated argument. Please remove it from your code. |
country |
string containing name of desired country, e.g. |
ISO |
string containing ISO3 code for desired country, e.g. |
continent |
string containing name of continent for desired data, e.g. |
full_results |
By default this is FALSE meaning the function only gives a message outlining whether specified country is available, if |
version |
(optional) The PR dataset version to use. If not provided, will just use the most recent version of PR data. (To see available version options, use listPRPointVersions) |
isAvailable_pr
returns a named list of input locations with information regarding data availability.
if full_results == TRUE
, a named list is returned with the following elements:
location
- specified input locations
is_available
- 1 or 0; indicating whether data is available for this location
possible_match
- agrep-matched country names indicating potential mispellings of countries where is_available == 0; NA if data is available for this location.
## Not run: isAvailable_pr(country = "Suriname") x <- isAvailable_pr(ISO = "NGA", full_results = TRUE) x <- isAvailable_pr(continent = "Oceania", full_results = TRUE) ## End(Not run)
## Not run: isAvailable_pr(country = "Suriname") x <- isAvailable_pr(ISO = "NGA", full_results = TRUE) x <- isAvailable_pr(continent = "Oceania", full_results = TRUE) ## End(Not run)
isAvailable_vec
checks whether the MAP database contains Vector Occurrence points for the specified country/location.
isAvailable_vec( sourcedata = NULL, country = NULL, ISO = NULL, continent = NULL, full_results = FALSE, version = NULL )
isAvailable_vec( sourcedata = NULL, country = NULL, ISO = NULL, continent = NULL, full_results = FALSE, version = NULL )
sourcedata |
deprecated argument. Please remove it from your code. |
country |
string containing name of desired country, e.g. |
ISO |
string containing ISO3 code for desired country, e.g. |
continent |
string containing name of continent for desired data, e.g. |
full_results |
By default this is FALSE meaning the function only gives a message outlining whether specified country is available, if |
version |
(optional) The vector points dataset version to use. If not provided, will just use the most recent version of vector points data. (To see available version options, use listVecOccPointVersions) |
isAvailable_Vec
returns a named list of input locations with information regarding data availability.
if full_results == TRUE
, a named list is returned with the following elements:
location
- specified input locations
is_available
- 1 or 0; indicating whether data is available for this location
possible_match
- agrep-matched country names indicating potential mispellings of countries where is_available == 0; NA if data is available for this location.
## Not run: isAvailable_vec(country = "Suriname") x <- isAvailable_vec(ISO = "NGA", full_results = TRUE) x <- isAvailable_vec(continent = "Oceania", full_results = TRUE) ## End(Not run)
## Not run: isAvailable_vec(country = "Suriname") x <- isAvailable_vec(ISO = "NGA", full_results = TRUE) x <- isAvailable_vec(continent = "Oceania", full_results = TRUE) ## End(Not run)
Returns true if second band of raster is a mask
isMaskedRaster(raster)
isMaskedRaster(raster)
raster |
SpatRaster object containing a single layer |
listData
deprecated function Please remove it from your code.
listData(datatype, printed = TRUE, ...)
listData(datatype, printed = TRUE, ...)
datatype |
"pr points", "vector points" "raster", or "shape" |
printed |
whether to pretty print the output in console |
... |
passed on to listPRPointCountries, listVecOccPointCountries, listShp |
listPoints
deprecated function Please remove it from your code.
listPoints(printed = TRUE, sourcedata, version = NULL)
listPoints(printed = TRUE, sourcedata, version = NULL)
printed |
whether to pretty print the output in console |
sourcedata |
"pr points" or "vector points" |
version |
(optional) The PR dataset version to use If not provided, will just use the most recent version of PR data. (To see available version options, use listPRPointVersions) |
listPRPointCountries
listPRPointCountries(printed = TRUE, version = NULL)
listPRPointCountries(printed = TRUE, version = NULL)
printed |
Should the list be printed to the console? |
version |
(optional) The PR dataset version to use If not provided, will just use the most recent version of PR data. (To see available version options, use listPRPointVersions) |
listPRPointCountries
returns a data.frame detailing the countries for which PR points are publicly available.
listPRPointVersions
lists available versions of parasite rate point data from the Web Feature Services provided by the Malaria Atlas Project.
listPRPointVersions(printed = TRUE)
listPRPointVersions(printed = TRUE)
printed |
Should the list be printed to the console? |
A data.frame with column 'version' The version can then be provided to other functions to fetch the data within that dataset. e.g. in getPR
## Not run: prDatasets <- listPRPointVersions() ## End(Not run)
## Not run: prDatasets <- listPRPointVersions() ## End(Not run)
listRaster
lists all rasters available to download from the Malaria Atlas Project database.
listRaster(printed = TRUE)
listRaster(printed = TRUE)
printed |
Should the list be printed to the console? |
listRaster
returns a data.frame detailing the following information for each raster available to download from the Malaria Atlas Project database.
dataset_id
the unique dataset ID of the raster, which can the be used in functions such as getRaster and extractRaster
raster_code
unique identifier for each raster
title
abbreviated title for each raster, used as surface
argument in getRaster()
title_extended
extended title for each raster, detailing raster content
abstract
full description of each raster, outlining raster creation methods, raster content and more.
citation
citation of peer-reviewed article in which each raster has been published
pub_year
year in which raster was published, used as pub_year
argument in getRaster() to updated raster versions from their predecessor(s).
min_raster_year
earliest year for which each raster is available
max_raster_year
latest year for which each raster is available
## Not run: available_rasters <- listRaster() ## End(Not run)
## Not run: available_rasters <- listRaster() ## End(Not run)
listShp
lists all administrative units for which shapefiles are stored on the MAP geoserver.
listShp(printed = TRUE, admin_level = c("admin0", "admin1"), version = NULL)
listShp(printed = TRUE, admin_level = c("admin0", "admin1"), version = NULL)
printed |
Should the list be printed to the console? |
admin_level |
Specifies which administrative unit level for which to return available polygon shapefiles. A string vector including one or more of |
version |
The admin unit dataset version to return. Is NULL by default, and if left NULL will just use the most recent version of admin unit data. |
listShp
returns a data.frame detailing the administrative units for which shapefiles are stored on the MAP geoserver.
## Not run: available_admin_units <- listShp() available_admin_units <- listShp(admin_level = c('admin2','admin3'), version = '202206') ## End(Not run)
## Not run: available_admin_units <- listShp() available_admin_units <- listShp(admin_level = c('admin2','admin3'), version = '202206') ## End(Not run)
listShpVersions
lists available versions of Admin Unit shapefiles from the Web Feature Services provided by the Malaria Atlas Project.
listShpVersions(printed = TRUE)
listShpVersions(printed = TRUE)
printed |
Should the list be printed to the console? |
A data.frame with column 'version'. The version can then be provided to other functions to fetch the data within that dataset. e.g. in getShp
## Not run: vecOccDatasets <- listShpVersions() ## End(Not run)
## Not run: vecOccDatasets <- listShpVersions() ## End(Not run)
listSpecies
lists all species occurrence data available to download from the Malaria Atlas Project database.
listSpecies(printed = TRUE, version = NULL)
listSpecies(printed = TRUE, version = NULL)
printed |
should the list be printed to the database. |
version |
(optional) The vector dataset version to use If not provided, will just use the most recent version of vector dataset data. (To see available version options, use listVecOccPointVersions) |
listSpecies
returns a data.frame detailing the following information for each species available to download from the Malaria Atlas Project database.
species
string detailing species
## Not run: available_species <- listSpecies() ## End(Not run)
## Not run: available_species <- listSpecies() ## End(Not run)
listVecOccPointCountries
listVecOccPointCountries(printed = TRUE, version = NULL)
listVecOccPointCountries(printed = TRUE, version = NULL)
printed |
Should the list be printed to the console? |
version |
(optional) The vector occurrence dataset version to use If not provided, will just use the most recent version of vector occurrence data. (To see available version options, use listVecOccPointVersions) |
listVecOccPointCountries
returns a data.frame detailing the countries for which vector occurrence points are publicly available.
listVecOccPointVersions
lists available versions of all the feature datasets in the Vector Occurrence workspace
from the Web Feature Services provided by the Malaria Atlas Project.
listVecOccPointVersions(printed = TRUE)
listVecOccPointVersions(printed = TRUE)
printed |
Should the list be printed to the console? |
A data.frame with column 'version'. The version can then be provided to other functions to fetch the data within that dataset. e.g. in getVecOcc
## Not run: vecOccDatasets <- listVecOccPointVersions() ## End(Not run)
## Not run: vecOccDatasets <- listVecOccPointVersions() ## End(Not run)
Create a single (sub) plot for a SpatRaster
makeSpatRasterAutoplot( spatraster, rastername, shp_df, legend_title, fill_scale_transform, fill_colour_palette, plot_titles )
makeSpatRasterAutoplot( spatraster, rastername, shp_df, legend_title, fill_scale_transform, fill_colour_palette, plot_titles )
spatraster |
SpatRaster object containing a single layer |
rastername |
raster name, to include in title |
shp_df |
sf shapefile |
legend_title |
title for legend |
fill_scale_transform |
scale |
fill_colour_palette |
palette |
plot_titles |
bool, whether to include title |
ggplot object
malariaAtlas
provides a suite of tools to allow you to
download all publicly available PR points for a specified country
(or ALL countries) as a dataframe within R.
listAll
- lists all countries for which there are publicly visible PR datapoints in the MAP database.
is_available
- checks whether the MAP database contains PR points for the specified country/countries.
getPR
- downloads all publicly available PR points for a specified country (or countries) and returns this as a dataframe.