
Package: odin (via r-universe)
September 29, 2024

Title ODE Generation and Integration

Version 1.5.11

Description Generate systems of ordinary differential equations (ODE)
and integrate them, using a domain specific language (DSL).
The DSL uses R's syntax, but compiles to C in order to
efficiently solve the system. A solver is not provided, but
instead interfaces to the packages 'deSolve' and 'dde' are
generated. With these, while solving the differential
equations, no allocations are done and the calculations remain
entirely in compiled code. Alternatively, a model can be
transpiled to R for use in contexts where a C compiler is not
present. After compilation, models can be inspected to return
information about parameters and outputs, or intermediate
values after calculations. 'odin' is not targeted at any
particular domain and is suitable for any system that can be
expressed primarily as mathematical expressions. Additional
support is provided for working with delays (delay differential
equations, DDE), using interpolated functions during
interpolation, and for integrating quantities that represent
arrays.

License MIT + file LICENSE

URL https://github.com/mrc-ide/odin

BugReports https://github.com/mrc-ide/odin/issues

Imports R6, cinterpolate (>= 1.0.0), deSolve, digest, glue, jsonlite,
ring, withr

Suggests V8, dde (>= 1.0.0), jsonvalidate (>= 1.1.0), knitr, mockery,
pkgbuild, pkgload, rlang, rmarkdown, testthat

VignetteBuilder knitr

RoxygenNote 7.2.3

Roxygen list(old_usage = TRUE, markdown = TRUE)

Encoding UTF-8

Language en-GB

1

https://github.com/mrc-ide/odin
https://github.com/mrc-ide/odin/issues

2 can_compile

Repository https://epiverse-connect.r-universe.dev

RemoteUrl https://github.com/mrc-ide/odin

RemoteRef HEAD

RemoteSha a27f172ad11505c58353833f2e49905f34a0eec5

Contents
can_compile . 2
odin . 3
odin_build . 5
odin_ir . 6
odin_ir_deserialise . 7
odin_js_bundle . 8
odin_js_versions . 8
odin_options . 9
odin_package . 10
odin_parse . 11
odin_validate . 13

Index 15

can_compile Test if compilation is possible

Description

Test if compilation appears possible. This is used in some examples, and tries compiling a trivial C
program with pkgbuild. Results are cached between runs within a session so this should be fast to
rely on.

Usage

can_compile(verbose = FALSE, refresh = FALSE)

Arguments

verbose Be verbose when running commands?

refresh Try again to compile, skipping the cached value?

Details

We use pkgbuild in order to build packages, and it includes a set of heuristics to locate and organise
your C compiler. The most likely people affected here are Windows users; if you get this ensure that
you have rtools installed. Using pkgbuild::find_rtools() with debug = TRUE may be helpful for
diagnosing compiler issues.

odin 3

Value

A logical scalar

Examples

can_compile() # will take ~0.1s the first time
can_compile() # should be basically instantaneous

odin Create an odin model

Description

Create an odin model from a file, text string(s) or expression. The odin_ version is a "standard
evaluation" escape hatch.

Usage

odin(x, verbose = NULL, target = NULL, workdir = NULL, validate = NULL,
pretty = NULL, skip_cache = NULL, compiler_warnings = NULL,
debug_enable = NULL, no_check_unused_equations = NULL, options = NULL)

odin_(x, verbose = NULL, target = NULL, workdir = NULL,
validate = NULL, pretty = NULL, skip_cache = NULL,
compiler_warnings = NULL, debug_enable = NULL,
no_check_unused_equations = NULL, options = NULL)

Arguments

x Either the name of a file to read, a text string (if length is greater than 1 elements
will be joined with newlines) or an expression.

verbose Logical scalar indicating if the compilation should be verbose. Defaults to the
value of the option odin.verbose or FALSE otherwise.

target Compilation target. Options are "c", "r" or "js", defaulting to the option odin.target
or "c" otherwise.

workdir Directory to use for any generated files. This is only relevant for the "c" target.
Defaults to the value of the option odin.workdir or tempdir() otherwise.

validate Validate the model’s intermediate representation against the included schema.
Normally this is not needed and is intended primarily for development use. De-
faults to the value of the option odin.validate or FALSE otherwise.

pretty Pretty-print the model’s intermediate representation. Normally this is not needed
and is intended primarily for development use. Defaults to the value of the
option odin.pretty or FALSE otherwise.

skip_cache Skip odin’s cache. This might be useful if the model appears not to compile
when you would expect it to. Hopefully this will not be needed often. Defaults
to the option odin.skip_cache or FALSE otherwise.

4 odin

compiler_warnings

Previously this attempted detection of compiler warnings (with some degree of
success), but is currently ignored. This may become supported again in a future
version depending on underlying support in pkgbuild.

debug_enable Enable debugging commands in generated code (currently print()). If TRUE
then these are generated by odin targets that support them, and will generally
make your program slower.

no_check_unused_equations

If TRUE, then don’t print messages about unused variables. Defaults to the option
odin.no_check_unused_equations or FALSE otherwise.

options Named list of options. If provided, then all other options are ignored.

Details

Do not use odin::odin in a package; you almost certainly want to use odin_package instead.
A generated model can return information about itself; odin_ir

Value

An odin_generator object (an R6 class) which can be used to create model instances.

User parameters

If the model accepts user parameters, then the parameter to the constructor or the $set_user()
method can be used to control the behaviour when unknown user actions are passed into the model.
Possible values are the strings stop (throw an error), warning (issue a warning but keep go-
ing), message (print a message and keep going) or ignore (do nothing). Defaults to the option
odin.unused_user_action, or warning otherwise.

Delay equations with dde

When generating a model one must chose between using the dde package to solve the system or the
default deSolve. Future versions may allow this to switch when using run, but for now this requires
tweaking the generated code to a point where one must decide at generation. dde implements only
the Dormand-Prince 5th order dense output solver, with a delay equation solver that may perform
better than the solvers in deSolve. For non-delay equations, deSolve is very likely to outperform
the simple solver implemented.

Author(s)

Rich FitzJohn

Examples

Compile the model; exp_decay here is an R6ClassGenerator and will
generate instances of a model of exponential decay:
exp_decay <- odin::odin({

deriv(y) <- -0.5 * y
initial(y) <- 1

odin_build 5

}, target = "r")

Generate an instance; there are no parameters here so all instances
are the same and this looks a bit pointless. But this step is
required because in general you don't want to have to compile the
model every time it is used (so the generator will go in a
package).
mod <- exp_decay$new()

Run the model for a series of times from 0 to 10:
t <- seq(0, 10, length.out = 101)
y <- mod$run(t)
plot(y, xlab = "Time", ylab = "y", main = "", las = 1)

odin_build Build an odin model generator from its IR

Description

Build an odin model generator from its intermediate representation, as generated by odin_parse.
This function is for advanced use.

Usage

odin_build(x, options = NULL)

Arguments

x An odin ir (json) object or output from odin_validate.

options Options to pass to the build stage (see odin_options

Details

In applications that want to inspect the intermediate representation rather before compiling, rather
than directly using odin, use either odin_parse or odin_validate and then pass the result to odin::odin_build.

The return value of this function includes information about how long the compilation took, if it
was successful, etc, in the same style as odin_validate:

success Logical, indicating if compilation was successful

elapsed Time taken to compile the model, as a proc_time object, as returned by proc.time.

output Any output produced when compiling the model (only present if compiling to C, and if the
cache was not hit.

model The model itself, as an odin_generator object, as returned by odin.

ir The intermediate representation.

error Any error thrown during compilation

6 odin_ir

See Also

odin_parse, which creates intermediate representations used by this function.

Examples

Parse a model of exponential decay
ir <- odin::odin_parse({

deriv(y) <- -0.5 * y
initial(y) <- 1

})

Compile the model:
options <- odin::odin_options(target = "r")
res <- odin::odin_build(ir, options)

All results:
res

The model:
mod <- res$model$new()
mod$run(0:10)

odin_ir Return detailed information about an odin model

Description

Return detailed information about an odin model. This is the mechanism through which coef works
with odin.

Usage

odin_ir(x, parsed = FALSE)

Arguments

x An odin_generator function, as created by odin::odin

parsed Logical, indicating if the representation should be parsed and converted into an
R object. If FALSE we return a json string.

Warning

The returned data is subject to change for a few versions while I work out how we’ll use it.

odin_ir_deserialise 7

Examples

exp_decay <- odin::odin({
deriv(y) <- -0.5 * y
initial(y) <- 1

}, target = "r")
odin::odin_ir(exp_decay)
coef(exp_decay)

odin_ir_deserialise Deserialise odin’s IR

Description

Deserialise odin’s intermediate model representation from a json string into an R object. Unlike
the json, there is no schema for this representation. This function provides access to the same
deserialisation that odin uses internally so may be useful in applications.

Usage

odin_ir_deserialise(x)

Arguments

x An intermediate representation as a json string

Value

A named list

See Also

odin_parse

Examples

Parse a model of exponential decay
ir <- odin::odin_parse({

deriv(y) <- -0.5 * y
initial(y) <- 1

})
Convert the representation to an R object
odin::odin_ir_deserialise(ir)

8 odin_js_versions

odin_js_bundle Create a bundle of an odin model

Description

Create a JavaScript bundle of an odin model

Usage

odin_js_bundle(code, include_support = TRUE)

Arguments

code An expression, string or path to a file containing odin code (as for odin_parse_).
If NULL, compile no model and return only the support code.

include_support

Logical, indicating if the support code should be included. Without this you
need to manually copy over odin.js or dust.js depending on what model type
you have.

Value

A list, with contents subject to change.

Warning

The interface and generated code here are subject to change. As it stands, it does what is needed for
our work in odin.api and does not actually produce a useful bundle!

Examples

js <- odin::odin_js_bundle(quote({
deriv(x) <- 1
initial(x) <- 1

}), include_support = FALSE)
head(js$model$code, 20)

odin_js_versions Report JS versions

Description

Report versions of JavaScript packages used to run odin models.

Usage

odin_js_versions()

https://github.com/mrc-ide/odin.api

odin_options 9

Value

A named list of package_version versions, for odinjs and other components used in the JavaScript
support.

Examples

odin::odin_js_versions()

odin_options Odin options

Description

For lower-level odin functions odin_parse, odin_validate we only accept a list of options rather than
individually named options.

Usage

odin_options(verbose = NULL, target = NULL, workdir = NULL,
validate = NULL, pretty = NULL, skip_cache = NULL,
compiler_warnings = NULL, no_check_unused_equations = NULL,
rewrite_dims = NULL, rewrite_constants = NULL, debug_enable = NULL,
substitutions = NULL, options = NULL)

Arguments

verbose Logical scalar indicating if the compilation should be verbose. Defaults to the
value of the option odin.verbose or FALSE otherwise.

target Compilation target. Options are "c", "r" or "js", defaulting to the option odin.target
or "c" otherwise.

workdir Directory to use for any generated files. This is only relevant for the "c" target.
Defaults to the value of the option odin.workdir or tempdir() otherwise.

validate Validate the model’s intermediate representation against the included schema.
Normally this is not needed and is intended primarily for development use. De-
faults to the value of the option odin.validate or FALSE otherwise.

pretty Pretty-print the model’s intermediate representation. Normally this is not needed
and is intended primarily for development use. Defaults to the value of the
option odin.pretty or FALSE otherwise.

skip_cache Skip odin’s cache. This might be useful if the model appears not to compile
when you would expect it to. Hopefully this will not be needed often. Defaults
to the option odin.skip_cache or FALSE otherwise.

compiler_warnings

Previously this attempted detection of compiler warnings (with some degree of
success), but is currently ignored. This may become supported again in a future
version depending on underlying support in pkgbuild.

10 odin_package

no_check_unused_equations

If TRUE, then don’t print messages about unused variables. Defaults to the option
odin.no_check_unused_equations or FALSE otherwise.

rewrite_dims Logical, indicating if odin should try and rewrite your model dimensions (if us-
ing arrays). If TRUE then we replace dimensions known at compile-time with
literal integers, and those known at initialisation with simplified and shared ex-
pressions. You may get less-comprehensible error messages with this option
set to TRUE because parts of the model have been effectively evaluated during
processing.

rewrite_constants

Logical, indicating if odin should try and rewrite all constant scalars. This is a
superset of rewrite_dims and may be slow for large models. Doing this will
make your model less debuggable; error messages will reference expressions
that have been extensively rewritten, some variables will have been removed
entirely or merged with other identical expressions, and the generated code may
not be obviously connected to the original code.

debug_enable Enable debugging commands in generated code (currently print()). If TRUE
then these are generated by odin targets that support them, and will generally
make your program slower.

substitutions Optionally, a list of values to substitute into model specification as constants,
even though they are declared as user(). This will be most useful in conjunction
with rewrite_dims to create a copy of your model with dimensions known at
compile time and all loops using literal integers.

options Named list of options. If provided, then all other options are ignored.

Value

A list of parameters, of class odin_options

Examples

odin_options()

odin_package Create odin model in a package

Description

Create an odin model within an existing package.

Usage

odin_package(path_package)

Arguments

path_package Path to the package root (the directory that contains DESCRIPTION)

odin_parse 11

Details

I am resisting the urge to actually create the package here. There are better options than I can
come up with; for example devtools::create, pkgkitten::kitten, mason::mason, or creating
DESCRIPTION files using desc. What is required here is that your package:

• Lists odin in Imports:

• Includes useDynLib(<your package name>) in NAMESPACE (possibly via a roxygen comment
@useDynLib <your package name>

• To avoid a NOTE in R CMD check, import something from odin in your namespace (e.g.,
importFrom("odin", "odin")s or roxygen @importFrom(odin, odin)

Point this function at the package root (the directory containing DESCRIPTION and it will write
out files src/odin.c and odin.R. These files will be overwritten without warning by running this
again.

Examples

path <- tempfile()
dir.create(path)

src <- system.file("examples/package", package = "odin", mustWork = TRUE)
file.copy(src, path, recursive = TRUE)
pkg <- file.path(path, "package")

The package is minimal:
dir(pkg)

But contains odin files in inst/odin
dir(file.path(pkg, "inst/odin"))

Compile the odin code in the package
odin::odin_package(pkg)

Which creates the rest of the package structure
dir(pkg)
dir(file.path(pkg, "R"))
dir(file.path(pkg, "src"))

odin_parse Parse an odin model

Description

Parse an odin model, returning an intermediate representation. The odin_parse_ version is a "stan-
dard evaluation" escape hatch.

12 odin_parse

Usage

odin_parse(x, type = NULL, options = NULL)

odin_parse_(x, options = NULL, type = NULL)

Arguments

x An expression, character vector or filename with the odin code

type An optional string indicating the the type of input - must be one of expression,
file or text if provided. This skips the type detection code used by odin and
makes validating user input easier.

options odin options; see odin_options. The primary options that affect the parse stage
are validate and pretty.

Details

A schema for the intermediate representation is available in the package as schema.json. It is
subject to change at this point.

See Also

odin_validate, which wraps this function where parsing might fail, and odin_build for building odin
models from an intermediate representation.

Examples

Parse a model of exponential decay
ir <- odin::odin_parse({

deriv(y) <- -0.5 * y
initial(y) <- 1

})

This is odin's intermediate representation of the model
ir

If parsing odin models programmatically, it is better to use
odin_parse_; construct the model as a string, from a file, or as a
quoted expression:
code <- quote({

deriv(y) <- -0.5 * y
initial(y) <- 1

})

odin::odin_parse_(code)

odin_validate 13

odin_validate Validate an odin model

Description

Validate an odin model. This function is closer to odin_parse_ than odin_parse because it does not
do any quoting of the code. It is primarily intended for use within other applications.

Usage

odin_validate(x, type = NULL, options = NULL)

Arguments

x An expression, character vector or filename with the odin code

type An optional string indicating the the type of input - must be one of expression,
file or text if provided. This skips the type detection code used by odin and
makes validating user input easier.

options odin options; see odin_options. The primary options that affect the parse stage
are validate and pretty.

Details

odin_validate will always return a list with the same elements:

success A boolean, TRUE if validation was successful

result The intermediate representation, as returned by odin_parse_, if the validation was success-
ful, otherwise NULL

error An error object if the validation was unsuccessful, otherwise NULL. This may be a classed
odin error, in which case it will contain source location information - see the examples for
details.

messages A list of messages, if the validation returned any. At present this is only non-fatal infor-
mation about unused variables.

Author(s)

Rich FitzJohn

Examples

A successful validation:
odin::odin_validate(c("deriv(x) <- 1", "initial(x) <- 1"))

A complete failure:
odin::odin_validate("")

A more interesting failure

14 odin_validate

code <- c("deriv(x) <- a", "initial(x) <- 1")
res <- odin::odin_validate(code)
res

The object 'res$error' is an 'odin_error' object:
res$error

It contains information that might be used to display to a
user information about the error:
unclass(res$error)

Notes are raised in a similar way:
code <- c("deriv(x) <- 1", "initial(x) <- 1", "a <- 1")
res <- odin::odin_validate(code)
res$messages[[1]]

Index

can_compile, 2
coef, 6

odin, 3, 5
odin_ (odin), 3
odin_build, 5, 12
odin_ir, 4, 6
odin_ir_deserialise, 7
odin_js_bundle, 8
odin_js_versions, 8
odin_options, 5, 9, 12, 13
odin_package, 4, 10
odin_parse, 5–7, 9, 11, 13
odin_parse_, 8, 13
odin_parse_ (odin_parse), 11
odin_validate, 5, 9, 12, 13

package_version, 9
pkgbuild::find_rtools(), 2
proc.time, 5

tempdir(), 3, 9

15

	can_compile
	odin
	odin_build
	odin_ir
	odin_ir_deserialise
	odin_js_bundle
	odin_js_versions
	odin_options
	odin_package
	odin_parse
	odin_validate
	Index

