Package: epicasting 0.1.0
Tanujit Chakraborty
epicasting: Ewnet: An Ensemble Wavelet Neural Network for Forecasting and Epicasting
Method and tool for generating time series forecasts using an ensemble wavelet-based auto-regressive neural network architecture. This method provides additional support of exogenous variables and also generates confidence interval. This package provides EWNet model for time series forecasting based on the algorithm by Panja, et al. (2022) and Panja, et al. (2023) <arxiv:2206.10696> <doi:10.1016/j.chaos.2023.113124>.
Authors:
epicasting_0.1.0.tar.gz
epicasting_0.1.0.zip(r-4.5)epicasting_0.1.0.zip(r-4.4)epicasting_0.1.0.zip(r-4.3)
epicasting_0.1.0.tgz(r-4.4-any)epicasting_0.1.0.tgz(r-4.3-any)
epicasting_0.1.0.tar.gz(r-4.5-noble)epicasting_0.1.0.tar.gz(r-4.4-noble)
epicasting_0.1.0.tgz(r-4.4-emscripten)epicasting_0.1.0.tgz(r-4.3-emscripten)
epicasting.pdf |epicasting.html✨
epicasting/json (API)
# Install 'epicasting' in R: |
install.packages('epicasting', repos = c('https://epiverse-connect.r-universe.dev', 'https://cloud.r-project.org')) |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 2 years agofrom:65900cc614. Checks:OK: 7. Indexed: no.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 19 2024 |
R-4.5-win | OK | Nov 19 2024 |
R-4.5-linux | OK | Nov 19 2024 |
R-4.4-win | OK | Nov 19 2024 |
R-4.4-mac | OK | Nov 19 2024 |
R-4.3-win | OK | Nov 19 2024 |
R-4.3-mac | OK | Nov 19 2024 |
Exports:ewnet
Dependencies:clicolorspacecurlfansifarverforecastfracdiffgenericsggplot2gluegtableisobandjsonlitelabelinglatticelifecyclelmtestmagrittrMASSMatrixMetricsmgcvmunsellnlmennetpillarpkgconfigquadprogquantmodR6RColorBrewerRcppRcppArmadillorlangscalestibbletimeDatetseriesTTRurcautf8vctrsviridisLitewaveletswithrxtszoo