Package: argo 3.0.2

Shihao Yang

argo: Accurate Estimation of Influenza Epidemics using Google Search Data

Augmented Regression with General Online data (ARGO) for accurate estimation of influenza epidemics in United States on national level, regional level and state level. It replicates the method introduced in paper Yang, S., Santillana, M. and Kou, S.C. (2015) <doi:10.1073/pnas.1515373112>; Ning, S., Yang, S. and Kou, S.C. (2019) <doi:10.1038/s41598-019-41559-6>; Yang, S., Ning, S. and Kou, S.C. (2021) <doi:10.1038/s41598-021-83084-5>.

Authors:Shaoyang Ning, Shihao Yang, S. C. Kou

argo_3.0.2.tar.gz
argo_3.0.2.zip(r-4.5)argo_3.0.2.zip(r-4.4)argo_3.0.2.zip(r-4.3)
argo_3.0.2.tgz(r-4.4-any)argo_3.0.2.tgz(r-4.3-any)
argo_3.0.2.tar.gz(r-4.5-noble)argo_3.0.2.tar.gz(r-4.4-noble)
argo_3.0.2.tgz(r-4.4-emscripten)argo_3.0.2.tgz(r-4.3-emscripten)
argo.pdf |argo.html
argo/json (API)

# Install 'argo' in R:
install.packages('argo', repos = c('https://epiverse-connect.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.30 score 2 stars 6 scripts 348 downloads 17 exports 15 dependencies

Last updated 2 years agofrom:cd77311a40. Checks:OK: 7. Indexed: no.

TargetResultDate
Doc / VignettesOKNov 09 2024
R-4.5-winOKNov 09 2024
R-4.5-linuxOKNov 09 2024
R-4.4-winOKNov 09 2024
R-4.4-macOKNov 09 2024
R-4.3-winOKNov 09 2024
R-4.3-macOKNov 09 2024

Exports:argoargo_mainargo2argo2_mainargox_mainboot_rebootstrap_relative_efficiencyheatmap_argoheatmap_corload_dataload_reg_datalogitlogit_invparse_gt_weeklyparse_unrevised_iliplot_argosummary_argo

Dependencies:bootcodetoolsforeachglmnetiteratorslatticeMatrixRcppRcppEigenshapesurvivalXMLxtablextszoo